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Abstract 

According to a recent report from International Technology Roadmap for Semiconductors 

(ITRS), semiconductor industry based on silicon Complementary metal–oxide–semiconductor 

(CMOS) technology is facing challenges in terms of making the device faster with higher density 

and lower power consumption. To overcome the challenges, various methodologies are attempted 

using different state variables instead of electric charges, for example, polarization, phase states, 

and electron spin information. Different materials can also be chosen instead of silicon, for 

example, carbon, complex metal oxides in 1D or 2D nanostructure formations. A different concept 

of operating devices is also another option, for example, single electron transistors, spintronics, 

and quantum electronics. 

A tremendous number of stages during microfabrication manufacturing for integrated 

circuits consist of a series of deposition and etching processes. During these processes, unknown 

problems can arise from the design of their structural geometry. For example, unwanted strain 

distribution from the electrode patterns can change the electric properties of underlying materials 

regarding the decrease in charge carrier mobility or increase in leakage current in dielectrics, which 

all occur in nanoscale. So, it is important to understand the effects of structural phenomena on the 

electronic properties of materials using nanoscale characterization. 

The first work shows the changes in electronic property in Si quantum dot devices 

fabricated on Si/SiGe heterostructure is discussed. The electrode deposition process on the 

heterostructure surface is necessary for the device operation, but the electrodes also induce external 

nanoscale strain fields. These strain fields are transferred to the substrate materials via electrode 

edges and change electronic band structure. The magnitudes of the strain and their impact on 

changing the band structure are studied. In the second project, the alignment of ferroelectric 
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polarization nanodomains in PbTiO3/SrTiO3 (PTO/STO) superlattice heterostructures is discussed. 

The PTO/STO nanostructure was created using a focused-ion beam technique. The domain 

alignment was observed using the x-ray nanodiffraction. A thermodynamic theoretical approach 

calculates the free energy density of the system to understand the origin of domain alignment. In 

the final project, the origin of photoinduced domain transformation in PTO/STO superlattices is 

discussed. Charged carriers are excited by the above-bandgap optical illumination, and transported 

by the internal electric fields arising from depolarization fields. These photoexcited charge carriers 

eventually screen the depolarization fields, and the initial striped nanodomain patterns transform 

to a uniform polarization state. After the end of illumination, the striped nanodomains patterns 

recover for a period of seconds at room temperature. The transformation time depends on the 

optical intensity, and the recovery time depends on the temperature. A charge trapping model with 

a theoretical calculation reveals that the charge trapping is a dominant process for the domain 

transformation, and the de-trapping process is for the recovery. Simulated domain intensity 

changes are in good agreements with the X-ray diffraction data. 
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List of Figures 

Figure 1-1: X-ray nanodiffraction geometry of an Si/SiGe heterostructure, on which a Pd electrode 

has been deposited. The 10 keV X-ray beam is focused using Fresnel zone plate focusing optics 

and a 2 dimensional CCD detector is used to detect the diffracted x-ray intensity. The Bragg 

reflection can shift on the detector resulting from electrode-stress-induced lattice tilt along the Tilt 

and Δ2θ directions. 

Figure 1-2: (a) Schematic of the x-ray diffraction geometry for studies of Si/SiGe heterostructures 

showing both cases of with (dotted) and without (solid) lattice tilt. ki and k’ are the wavevectors of 

the incident and diffracted X-rays at Bragg angle θ. Q is the corresponding reciprocal space vector 

without lattice tilt. When the lattice plane is tilted with tilt angle 𝜒, diffracted X-ray beam is shifted 

by an angle α, and the corresponding wavevectors become k’(𝜒) and Q(𝜒). (b) Schematic showing 

diffracted X-rays both with and without lattice tilt. Three additional vectors a, b and c are defined 

to estimate the shift of diffracted X-ray using the trigonometrical function. 

Figure 2-1: SEM image of a Si QD device showing the regions of interest in which x-ray 

nanodiffraction was used to probe the structural distortion. The regions of interest for the x-ray 

nanodiffraction are outlined with the two boxes. The dashed box indicates a region where a single 

linear gate electrode is deposited, and the solid box shows where many gate electrodes are closely 

deposited to make the electrostatically defined QD region. 

Figure 2-2: Cross section of the Si/SiGe heterostructure and Pd gate electrode. The SQW is 

deformed with electrode-stress-induced radius of curvature R due the transferred stress from the 

electrode. The strain difference between bottom and top layer of SQW is defined as t/R. 

Figure 2-3: Simulated θ-2θ coupled scan of the sSQW and the top SiGe. The position of the Bragg 

peaks from the top SiGe and the sSQW along qz are at 4.58 Å -1 and 4.69 Å -1, respectively. Narrow 

and broad oscillating fringe components are from the thicknesses of the top SiGe and sSQW layers, 

which are 91 nm and 10 nm, respectively. 

Figure 2-4: Map of the Pd M-edge fluorescence intensity in the quantum device region using x-

ray nanobeam fluorescence microscopy. The fluorescence intensity becomes bright when the x-

ray nanobeam illuminates the middle of each electrode, showing that nine Pd gate electrodes are 

deposited. 

Figure 2-5: (a) Detector image of a diffraction pattern of the sSQW. Because the detector can 

capture two-dimensional reciprocal space information, the thickness fringe along the Δ2θ-direction 

is also visible. The thickness fringe arising from the 91-nm thick SiGe layer is superimposed on 

the sSQW Bragg peak, and the shadow of the center stop is also visible in the middle of the 

diffraction pattern. (b) Stack of the Tilt-direction intensity line profiles. The x-ray nanobeam was 

laterally displaced across the electrode at fifty locations. The diffraction patterns are summed along 

Δ2θ-direction to calculate the centroid along the Tilt direction. The summed diffraction patterns 

are stacked up on each other. The green curve exhibits change in centroid. 

Figure 2-6: Comparison between experimental diffraction pattern and simulation, and between the 

diffraction patterns acquired (a) far from the electrode and (c) at the tilted region. (b) Simulated 

diffraction pattern using the method of Ref [26] and conditions corresponding to (a). 
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Figure 2-7: (a) Intensity line profiles of diffraction patterns integrated along the Tilt-direction of 

the detector, acquired in regions far from the tilted region (blue) and at the tilted region (orange). 

(b) Fourier transform intensities of the two intensity line profiles and the models shown in (a) as a 

function of spatial frequency, Δqz. The Fourier transform intensity at Δqz = 0.007 arises from the 

thickness fringe of the top SiGe layer, and the results of the Fourier transform of the model agree, 

as shown in the dotted curves. 

Figure 2-8: Map of the Pd M-edge fluorescence intensity in the region of a single linear Pd 

electrode using x-ray nanobeam microscopy. The intensity becomes bright when the x-ray beam 

illuminates the middle of the electrode. (b) Fourier transform intensity at a fringe spacing of Δqz = 

0.007 Å -1, exhibiting the disappearance of the SiGe layer interference fringes in the tilted region. 

Figure 2-9: Fourier transform intensity at fringe spacing of Δqz = 0.007 Å -1 for the areas shown in 

Figure 2 4. The black box indicates the QD region where many electrodes are closely deposited, 

and the Fourier transform intensity of this region is shown in (b). 

Figure 2-3: Stack of the Tilt-direction intensity line profiles for the comparison between two 

methods to track the shift of the diffraction pattern. The centroid information (green) already 

introduced in Figure 2- (b) is compared with the phase information (blue) extracted from the 

Fourier transform of the diffraction patterns. 

Figure 2-4: Si/SiGe heterostructure showing lattice displacements along the x-axis (u), which is a 

function of the two radial distances r1 and r2 measured in the x-z plane. 

Figure 2-5: 3D map of lattice tilt angles calculated from the first derivative of u in terms of the 

depth z. The magnitude of lattice tilts under electrode is depth dependent, and it becomes 0.03° 

approximately 100 nm below the surface at which sSQW is located (outlined with a black box). 

Figure 2-6: (a) Cross-sectional diagram of X-ray diffraction geometry explaining an issue 

regarding offset of electrode positions between Figures. 2-8 (a) and 2-8 (b). The red dot is a 

particular surface location at which the incident x-ray ki, illuminates sSQW buried immediately 

beneath the electrode. ki’, is another incident x-ray at which fluorescence signal from electrode is 

initially generated. (b) Plan view of experimental X-ray diffraction geometry. The direction of 

incident X-ray and the electrode direction different by an angle δ provides Δx = 108 nm when 

considering the approximate value of the angle δ of 45°. 

Figure 2-7: Illustration of a Cartesian coordinate Tilt-Δ2θ plane. P(Tilt, Δ2θ) is a position of 

diffraction pattern on detector. P(α+, α‖) is a new position on α+-α‖ plane converted by a rotation 

matrix. The α+ and α‖ are directions perpendicular and parallel to electrode length direction, 

respectively. The shift in the diffraction pattern on the detector is determined by computing the 

shift of centroid of the diffraction patterns on the Tilt-Δ2θ plane and then reconsidered on the α+-

α‖ plane by the rotation matrix. 

Figure 2-8: Map of the sSQW lattice tilt angles in a single electrode area indicated by the dotted 

box in Figure 2 1. Lattice tilt angles are measured by computing shifts in diffraction patterns from 

sSQW, for which the maximum magnitude becomes 0.03° under the electrode. The sign of lattice 

tilt changes at the middle of the electrode, which might arise from lattice deformations by 

elastically transferred electrode stress. 
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Figure 2-9: (a) Map of the Pd M-edge fluorescence intensity in the QD region. Many electrodes 

are closely deposited, as outlined with dotted lines. The asterisk indicates the position of a QD. (b) 

Tilt magnitude map of the sSQW lattice planes in the same area. The maximum tilt magnitude is 

0.05°, which is a factor of 2.5 larger than at the single electrode. 

Figure 2-10: Diagram showing the concave-up bending of sSQW (gray) arising from the lattice 

tilt under the electrode with the radius of curvature (R), thickness (t), and the tilt angle (φ). Strain 

neutral plane is indicated by the dotted line inside gray box. Z is the distance between the neutral 

plane and the top layer. 

Figure 2-18: Plots of the lattice tilt and strain difference of sSQW (gray) arising from the bending 

curvature under the electrode. 

Figure 2-19: (a) Map of the strain difference across the thickness of the sSQW in the QD region. 

(b) Comparison between strain differences induced by the single electrode along with the intrinsic 

tilt from plastic relaxation of the SiGe layer and the QD electrodes near the region indicated by 

the asterisk in (a). 

Figure 3-11: (a) Schematic of nanostructure fabrication. (b) SEM image of an 800 nm-wide 

PTO/STO SL nanostructure created using FIB lithography. The protective cap appears as a raised 

region covering the ridge-shaped nanostructure. The cap also extends slightly into the region 

beyond the unpatterned area of the SL at each edge of the nanostructure. 

Figure 3-2: (a) X-ray nanodiffraction geometry including the PTO/STO SL thin film 

heterostructure, underlying SRO layer, and STO substrate. (b) Geometry of reciprocal space near 

the 002 X-ray reflection of the PTO/STO SL. When the diffraction experiment matches the Bragg 

condition for the SL, at Δθ = 0, the Ewald sphere (dark gray) intersects (i) Bragg reflection and (ii) 

the ring of domain diffuse scattering. At other values of Δθ the Ewald sphere intersects the ring of 

domain diffuse scattering at a different value of δ. 

Figure 3-3: Detector images of diffraction patterns of (a) SL Bragg reflection, (b) simulated SL 

Bragg reflection, and (c) domain diffuse scattering acquired at the Bragg condition. The 2 

diffraction angle is in the horizontal direction in the diffraction patterns in this figure. 

Figure 3-4: (a) SEM image of an 800 nm-wide SL nanostructure, and (b) its crystal lattice tilt with 

(c) Schematic of a curved lattice resulting from the lattice tilt with its estimated magnitude of 

curvature calculated using the derivation of the lattice tilt angles. The red arrows indicate the 

surface normal directions. 

Figure 3-5: In-plane structural relaxation computed under the assumption that the strain arises only 

from bending of the nanoscale sheet. 

Figure 3-6: Diffraction patterns acquired along the length of a 500-nm-width nanostructure. The 

X-ray beam was scanned along the path indicated by the green dotted line. The diffraction patterns 

are shifted on the detector plane, and the angular difference (∆) arises because the out-of-plane 

lattice parameter within the nanostructure. The 2 diffraction angle is in the vertical direction in 

the diffraction patterns in this figure. 
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Figure 3-7: Diagrams of the polarization within SL nanostructures in (a) perpendicular (δ = 90°) 

and (b) parallel (δ = 0°) domain configurations. (c) Definitions of the parameters used to describe 

the domain wall orientation: the local domain-wall in-plane normal (n) and azimuthal angle (δ) 

with respect to the y-axis. 

Figure 3-8: Reciprocal space maps with Ewald sphere (purple) and the domain intensity (yellow). 

The superlattice Bragg peak is not shown. The corresponding x-ray incident angles are (a, c) θB 

and (b, d) θB + Δθ. 

Figure 3-9: Plan view of models for ferroelectric stripe domain patterns in real space with up 

(white) and down (black) polarizations with (a) disordered and (c) aligned domain patterns. The 

domain period is defined as the distance covering both up and down polarizations. (b, d) Fourier 

transform intensity of (a) and (c) in reciprocal space arising from the lateral repetition of the 

domain period. 

Figure 3-10: Map of domain diffuse scattering intensity acquired at Δθ = 0.03°, corresponding to 

δ = 1° in the area shown in (c). The intensity within the nanostructure is higher than that in the 

unpatterned region by a factor of 7. 

Figure 3-11: Normalized domain diffuse scattering intensities as a function of azimuthal angle δ. 

Domain scattering intensities were measured in unpatterned regions and in 500 nm- and 800 nm-

wide SL nanostructures at domain normal angles δ = 1° and 8°. 

Figure 3-12: Maps of (a) the relaxation along y-direction (Uy) (b) z-component of the polarization 

(Pz) in the (i) perpendicular and (ii) parallel configurations in an 80 nm-wide SL nanostructure. (c) 

Nanostructure-width-dependent volume-normalized total free energy. Extrapolation to larger 

widths indicates that the parallel configuration remains energetically favorable at the experimental 

nanostructure widths. (d) Free energy as a function of external stress applied along the y-direction 

σyy, indicating that the parallel configuration is favorable under experimentally applied stresses 

that arise from the lithography processes. 

Figure 4-12: Optical pump/x-ray nanobeam instrument. An optical pulse with wavelength 355 nm 

is coupled into a single-mode optical fiber. The output of the fiber is collected by a collimator and 

focused by an objective lens onto the sample. 

Figure 4-2: Front panel of LabVIEW program that shows how the user interface looks like to 

operate the program. Each stage can be selected to run separately, and their traveling speed is 

required to be manually calibrated before experiments. Measured optical power and the travel 

distance can be monitored and plotted in the two graphs on the right in real time, and saved upon 

clicking the save button when needed. 

Figure 4-3: (a) Optical spot size measurement by scanning the focused optical beam across a knife 

edge using the translation stage supporting the collimator and objective lens. (b) Transmitted 

optical power as a function of the displacement along the x-axis of the laser in which the half of 

laser power is blocked by the knife edge. The laser is positioned in the middle of the depth of focus 

(DOF) before measuring the power while moving the laser along the y-axis. (c) Transmitted optical 

power as a function of the displacement along the y-axis of the laser relative to the knife edge. The 

full width at half maximum given by the error function fit (solid line) is 1.9 µm. 
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Figure 4-4: Timings of laser pump and x-ray probe pulses as well as the detector gating signal. 

The laser width is 50 fs with the repetition rate of 54 kHz (18.52 µs), and its time of arrival to the 

sample can be delayed relative to 100-ps x-ray pulses with the repetition rate of 6.5 MHz. The 

detector gating can also be electronically selected to collect the limited number of diffracted x-ray 

pulses. 

Figure 4-5: Rocking curves of the intensity of the BiFeO3 pseudocubic 002 Bragg reflection as a 

function of the incident x-ray beam angle. The diffracted x-ray intensity was measured with x-ray 

pulses arriving at times 0.4 ns before (black) and 0.17 ns after (red) the temporal coincidence of 

the optical and x-ray pulses, defined as time T0. The scan at positive delay exhibits a peak shift 

from 18.27° to 18.25°, corresponding to an optically induced out-of-plane lattice expansion of 

0.11%. 

Figure 4-6: Two-dimensional maps at times after and before T0 at an x-ray incident angle of θ = 

18.20°, below the Bragg angle of 18.27°. (a) At positive delay, T0+0.4 ns, the optically induced 

expansion leads to increased intensity in the central region of the map in which the optical pulse 

was focused. (b) At negative delay, T0−0.2 ns, where photoinduced expansion is not apparent. 

Figure 4-7: Change in diffracted x-ray intensity during a time-resolved experiment with various 

fluences. The incident x-ray angle is fixed slightly lower than the Bragg angle so the measured 

intensity becomes brighter due to the lattice expansion after T0.
 

Figure 4-8: (a) Delay scan acquired in the region of spatial overlap of the focused laser and x-ray 

pulses. (b) Spatial relaxation of the photoinduced lattice dynamics at various delay times from 0.15 

ns to 16 ns. 

Figure 5-1: Schematic of domain transformation in PTO/STO SLs. The initial striped nanodomains 

contain up (beige) and down (blue) polarizations with its periodicity Λ. Optical illumination with 

a wavelength of 400 nm induce the domain transformation from the initial striped nanodomains to 

a uniform polarization state. After the end of illumination, the striped nanodomains is recovered. 

Figure 5-2: SL Bragg reflection (red) and domain diffuse scattering intensity (green) in reciprocal 

space. After the transformation, the SL Bragg reflection shift to a lower value of Qz by ΔQz, and 

the domain intensity disappears. 

Figure 5-3: 002 Bragg reflection as a function of Qz before optical illumination (solid) and after 

optically induced domain transformation (dashed). The Bragg STO and SRO reflections do not 

move but the SL Bragg reflections shift to a lower value of Qz because of the photoinduced lattice 

expansion. 

Figure 5-4: (a and b) Scattered x-ray intensities for SL Bragg reflections measured at room 

temperature and 335 K are plotted as a function of Qz. Between the three cases, ΔQz indicates that 

the recovery is completed only at 335 K within 5 s after the end of illumination. (c and d) Domain 

intensities measured at room temperature and 335 K are plotted as a function of Qy. Domain 

intensity disappears after the transformation and the recovery is completed only at 335 K within 5 

s after the end of illumination. 

Figure 5-5: Changes in (a) ΔQz and (b) domain intensities as a function of time after the end of 

illumination, showing an optical intensity dependence of domain transformation. The data in first 
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three panels and last panel was obtained at room temperature and 400 K. Optical intensities were 

46 mW cm-2, 58 mW cm-2, and 145 mW cm-2. The shaded region represents 25 s of optical 

illumination. 

Figure 5-6: (a) Maximum ΔQz obtained for 25 s of illumination (light-on) as a function of optical 

intensity ranging from 19 mW cm-2 to 145 mW cm-2. The slight change of ΔQz starts to show up 

from 46 mW cm-2 and it saturates at 145 mW cm-2. (b) 90% transformation time as a function of 

optical intensity ranging from 19 mW cm-2 to 145 mW cm-2. The transformation time was not 

observed with optical intensity lower than 58 mW cm-2. 

Figure 5-7: ΔQz and domain intensity during recovery were measured. Before the measurement, 

the sample was optically illuminated at 58 mW cm-2 until the domain intensity disappeared. (a and 

b) ΔQz and domain intensities measured at room temperature (circle), 310 (star), and 335 K (square) 

are plotted as a function of time after the end of illumination. The domain intensities are 

normalized by their initial intensity. (c) 90% recovery time is plotted as a function of temperature 

showing that the recovery time becomes faster at higher temperatures. 

Figure 5-8: (a) Schematic of microscopic heterogeneous domain transformation model. 10 × 20 

matrices are assumed to be the optically illuminated area consisting both (i) untransformed (white) 

and (ii) transformed (magenta) sites. Particularly, it exhibits a case when 50% of the area is 

transformed. (b) Simulated distributions of SL lattice constants based on the model. Simulated 

parameters are such that, (i) in the untransformed region, the SL lattice constant is 4.016 Å  with 

its variation of 0.023 Å  (WQ = 0.017 Å -1) (ii) in the untransformed region, the lattice is set to be 

4.044 Å  (0.7% strain) with its variation of 0.033 Å . The last panel shows the averaged lattice 

constant from the entire area. 

Figure 5-9: Simulation results of change in SL lattice expansion showing that the lattice gradually 

increases as the lattice constant is set to be 0.7% greater than its initial when the transformation is 

completed. 

Figure 5-10: Comparison between the measured data (blue curves) and selected simulation results 

(magenta circles) of change in SL lattice expansion. The measurements are under optical 

illumination for 25 seconds, and the number of transformed sites are chosen and plotted in the 

circles. The measured data and the selected simulation results agree well that the lattice gradually 

increases. 

Figure 5-11: Magnitude of the energetically stable polarizations as a function of screening 

efficiency computed using a Landau-Ginsburg-Devonshire calculation. The initial magnitudes are 

±0.52 C/m2 representing the initial nanodomains. The zero-polarization is a solution of the 

calculation but for an unstable polarization state. When the screening efficiency reaches a 

threshold (Nth) the up polarization disappears, which corresponds to the moment of domain 

transformation. 

Figure 5-12: Schematic of charge trapping model showing the number of trapped charges 

normalized by the threshold (Naccum/Nth) as a function of illumination time. The photoinduced 

charges are trapped every 1 ms of optical pulses. The trapped charges are thermally de-trapped 

between the optical pulses. When the number of charge trapping is greater than the loss, the total 

accumulation increase. 
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Figure 5-13: Results of optical intensity dependence of domain recovery based on the charge 

trapping model showing the changes in Naccum/Nth as a function of time after the end of illumination. 

The shaded region represents 25 s of optical illumination. Two optical intensity of 58 mW cm-2 

(solid) and 145 mW cm-2 (dash-single dotted) are used. 

Figure 5-14: Results of temperature dependence of domain recovery based on the charge trapping 

model showing the changes in domain intensity as a function of time after the end of illumination. 

Domain intensities are normalized by their initial intensities. Two domain intensities measured at 

room temperature (circle) and 335(square) are extracted from Figure 7 (b), which are compared to 

the intensities simulated at room temperature (solid) and 335(dashed). 

Figure 5-15: Changes in normalized domain intensity as a function of time after the end of 

illumination compared with the simulated domain intensity from charge trapping model. The 

shaded region represents 25 s of optical illumination. The measured data is extracted from Figure 

5-5 (b). 

Figure 5-16: Changes in normalized domain intensity as a function of area-averaged Naccum/Nth. 

The moments of domain intensity drops using different intensities merge at a certain point. 

Figure 5-17: (a) Plot of change in normalized domain intensity as a function of temperature with 

the laser on. The shaded region indicates when the laser is on, and the temperature is ramping up. 

The temperature ramp rate was 0.1 K/s. (b) Simulated normalized domain intensity as a function 

of increasing temperature. The Shaded region is where the laser is on, and temperature is ramping 

up in the simulation. 
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Chapter 1: Introduction 

 Heterostructures 

Semiconductor heterostructure, a sandwiched-multilayer of different semiconductors, can 

improve the device performance through bandgap engineering [1] and strain engineering [2]. In 

the same context, the formation of 2-dimensional electron gases (2DEGs) [3], ferroelectric 

superlattices, [4] and stacking 2D material layers in so-called van der Waals heterostructures [5,6] 

have also become exciting research topics in terms of the discovery and investigation of new 

physical phenomena. For example, the advent of these heterostructures opens a new era in which 

the quantum computer is anticipated as the fundamental building block of future devices for the 

faster computing speeds in key problems.  

H. Kroemer and Z. Alferov proposed the concept of a double heterostructure in the early 

1960s and were awarded the Nobel prize in Physics in 2000 for their contributions to double-

heterostructure-based devices [7]. One of the most significant developments to fabricate the high 

crystalline heterostructure is the evolution of epitaxial growth techniques such as molecular beam 

epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) developed in the 1970s, 

and MBE was mainly designed to fabricate III-V semiconductor heterostructures in 1975 by A. 

Cho at Bell Laboratory [8,9]. The realization of low dimensional semiconductor devices using the 

concept of the heterostructure has also been a relevant research field for quantum electronics, in 

which their electronic properties are significantly different from the same bulk material [10]. 

Notably, quantum wells (QWs) restrict the motion of charge carriers within limited dimensions. 

This confinement effect was demonstrated in optical absorption spectra in the 1970s [10,11]. QWs 

have been widely used as fundamental building blocks of the quantum electronics, and can require 
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the patterning of surface structures such as thin metal electrode patterns for their operation. These 

surface structures, however, can unintentionally alter the electronic properties of the QWs by 

inducing additional stresses. A more detailed description and experimental study of this effect is 

provided in Chapter 2. 

 Superlattices 

Further progress of in the design and fabrication of heterostructures started with 

experiments on electron transport in superlattices by L. Esaki and R. Tsu [4]. Superlattices have 

structural periodicity created by the repetition of layers of the same composition of materials. The 

superlattice period is larger than the lattice constant of the crystal (e.g. tens to hundreds of lattice 

constants) and leads to an additional periodic potential. The early idea of superlattices is based on 

the epitaxial growth of the lattice-matched semiconductor materials.  

The idea of a superlattice system was not limited to the III-V semiconductor 

heterostructures and has recently been employed in ferroelectric systems. Ferroelectric 

superlattices consisting of several unit cells of ferroelectric and dielectric alternating layers also 

exhibit distinct electronic properties arising from their periodicities [12]. For example, the 

PbTiO3/SrTiO3 (PTO/STO) superlattice permit exotic ferroelectric polarization domain 

configurations [13,14]. Superlattices have been studied using many theoretical [15,16] and 

experimental [14,17] approaches to reveal their new electronic properties. New approaches to 

understanding and controlling the properties of ferroelectric superlattices based on creating 

superlattice nanostructures and illuminating the superlattices using above-bandgap light are 

discussed in Chapters 3 and 5. 
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 Other engineering techniques 

In addition to creating heterostructures, there are many other ways to engineer the 

electronic properties. For example, in GaAs strain can raise the valence band, change the bandgap, 

and create more favorable operating conditions for light-emitting diodes [2]. Superlattice growth 

with lattice-mismatched semiconductor materials inducing strains was demonstrated by E. 

Blakeslee and J. Matthews. A strained-layer superlattice can be grown with a very low defect 

concentration because the lattice mismatch between very thin layers is accommodated entirely by 

strain when the mismatch is less than about 7% [18]. In this case, the misfit defects are rarely 

generated at the interfaces.  

As briefly mentioned above the electronic properties of these thin film heterostructure can 

be changed by depositing surface structures such as electrodes or by external stimuli such as 

electric fields or optical illumination. These strategies have a variety of effects on the electronic 

properties, some of which are only beginning to be understood. The bandgap of Si QWs, for 

example, is sensitive to atomic arrangement, which is in turn altered by nanoscale strain from the 

electrode patterns on the surfaces [19], as described in Chapter 2. Randomly organized 

ferroelectric polarization domains in PTO/STO superlattices are aligned due to subtle nanoscale 

elastic effects when forming nanostructures [20], as described in Chapter 3. In the same 

superlattice system, carrier dynamics, after the above-bandgap optical illumination induce domain 

transformations, as discussed in Chapter 5. 

These changes in electronic properties occur at the nanoscale, which makes it difficult to 

measure them and to interpret their impact. Consequently, nanoscale characterization is necessary. 

X-ray diffraction is a powerful non-destructive technique for the study of nanoscale structural 

changes, and provides insight that can be used to deduce electronic information. This technique 
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recently has become a more powerful tool through the development of x-ray nanofocusing 

techniques [21]. X-ray nanodiffraction provides a way for scientists and engineers to understand 

nanoscale materials characteristics.  

 X-ray nanodiffraction  

The x-ray diffraction techniques discussed in the remaining chapters of this thesis are based 

on focusing an X-ray beam to a sizes tens to hundreds of nanometers using Fresnel zone plate 

optics [21]. A zone plate is a pattern of concentric rings consisting of a material whose refractive 

index is slightly less than unity for X-rays. Thus, the phase velocity of the x-rays in these rings is 

faster than outside, and after passing through the zone plate, the X-ray beams are focused at one 

focal point determined by the width and the spacing of the rings. 

The x-ray nanodiffraction studies were conducted using the photon energies from 9 to 11 

keV facilities at the Advanced Photon Source (APS) of Argonne National Laboratory. Figure 1-1 

shows the x-ray nanodiffraction geometry at the Hard X-ray Nanoprobe beamline of the APS, 

which is mainly discussed in the characterization of Si/SiGe heterostructures described in Chapter 

2. A similar approach was employed for the studies described in the other chapters. In the 

experiments at this beamline, x-ray diffraction patterns were acquired using a two-dimensional 

charge-coupled-device (CCD) detector. The detector consisted of a 1024  1024 array of square 

pixels with an edge length of 13 µm. Two orthogonal directions on the detector are defined, termed 

Tilt and Δ2θ, with orientations as shown in Figure 1-1. 



5 

 

A key issue discussed in Chapter 2 is the tilt of lattice planes resulting from strain effects, 

which is probed by the X-ray nanodiffraction. Because of these lattice tilts, the diffraction patterns 

on the detector plane shift according to the tilt directions, and thus, the shift of the diffraction 

pattern is easily converted to the lattice tilt angle using the relationship between them [22,23]. 

Figure 1-2(a) shows a diagram of the x-ray diffraction geometry showing wavevectors and angles 

associated with lattice tilts. The gray rectangular box indicates the orientation of the lattice planes, 

with the effect of tilts indicated by the dotted rectangular box. Incident and diffracted x-rays are 

depicted in purple and reciprocal space wavevectors are in red. The solid and dotted lines describe 

the untitled and tilted lattice planes, respectively. When an incident x-ray beam with wavevector 

ki, propagating on the x-z plane, meets the Bragg condition of the lattice at angle θ, the x-ray is 

diffracted to wavevector k’. The corresponding reciprocal space vector Q is defined to be along 

the z-axis. When the lattice plane tilts with respect to the x-axis as the axis of rotation with a tilt 

angle, the diffracted X-ray also deviates from the x-z plane (k”). Accordingly, the reciprocal space 

Figure 1-1: X-ray nanodiffraction geometry of an Si/SiGe heterostructure, on which a Pd 

electrode has been deposited. The 10 keV X-ray beam is focused using Fresnel zone plate 

focusing optics and a 2 dimensional CCD detector is used to detect the diffracted x-ray intensity. 

The Bragg reflection can shift on the detector resulting from electrode-stress-induced lattice tilt 

along the Tilt and Δ2θ directions. 
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vector also depends on the tilt angle. Figure 1-2(b) shows a diagram of the relationship between 

the diffracted x-rays from the tilted and untitled planes. The angle of the shift is equal to , which 

is equivalent to the shift of the diffraction pattern on the detector when it is small. 

The vector components depicted in Figure 1-2(a) are defined in Eq. 1-1 in terms of three 

angles: the incident Bragg angle (θ), shift of the diffraction pattern (α), and lattice tilt angle (𝜒). 

𝒌𝒊
⃗⃗  ⃗ = |𝒌|𝒄𝒐𝒔𝜽𝒙̂ − |𝒌|𝒔𝒊𝒏𝜽𝒛̂ 

𝑸⃗⃗ (𝝌 = 𝟎) = 𝟐|𝒌|𝐬𝐢𝐧𝜽𝒛̂ 

𝑸⃗⃗ (𝝌) = |𝑸|𝐬𝐢𝐧𝝌𝒚̂ + |𝑸|𝐜𝐨𝐬𝝌𝒛̂ 

𝒌⃗⃗ ′(𝝌 = 𝟎) = |𝒌|𝐜𝐨𝐬𝜽𝒙̂ + |𝒌|𝐬𝐢𝐧𝜽𝒛̂ 

Figure 1-2: (a) Schematic of the x-ray diffraction geometry for studies of Si/SiGe 

heterostructures showing both cases of with (dotted) and without (solid) lattice tilt. ki and k’ are 

the wavevectors of the incident and diffracted X-rays at Bragg angle θ. Q is the corresponding 

reciprocal space vector without lattice tilt. When the lattice plane is tilted with tilt angle 𝜒, 

diffracted X-ray beam is shifted by an angle α, and the corresponding wavevectors become k’(𝜒) 

and Q(𝜒). (b) Schematic showing diffracted X-rays both with and without lattice tilt. Three 

additional vectors a, b and c are defined to estimate the shift of diffracted X-ray using the 

trigonometrical function. 
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𝒌⃗⃗ ′(𝝌) = 𝒌⃗⃗ ′′ = |𝒌|𝐜𝐨𝐬𝜽𝒙̂ + |𝑸|𝐬𝐢𝐧𝝌𝒚̂ + (|𝑸|𝐜𝐨𝐬𝝌 − |𝒌|𝒔𝒊𝒏𝜽)𝒛̂ 

Equation 1-1 

The shift of the diffraction patterns α is the angle between the wavevectors k’ and k’’, 

which can be calculated as defined in Eq. 1-2. 

𝜶 = 𝒄𝒐𝒔−𝟏 (
𝒌⃗⃗ ′ ∙ 𝒌⃗⃗ ′′

|𝒌⃗⃗ ′||𝒌⃗⃗ ′′|
) 

Equation 1-2 

In the X-ray diffraction experiment, α is a measured value, and 𝜒 is determined from α. In 

Figure 1-2(b), three more vectors, a, b and c are defined. Here, c is the shift of diffraction 

patterns on the detector in the experiment. The vector c is approximately equal to a because b 

and α are small. Based on their definitions in Figure 1-2(b) we can find a relationship between 

these vectors: 

𝒂⃗⃗ = 𝒃⃗⃗ + 𝒄⃗ = 𝒄⃗ = 𝒌⃗⃗ ′ − 𝒌⃗⃗ ′′ = (𝟐|𝒌|𝐬𝐢𝐧𝜽 − |𝑸|𝐜𝐨𝐬𝝌)𝒛̂ − |𝑸|𝐬𝐢𝐧𝝌𝒚̂ 

Equation 1-3 

When α is small, it can be simplified, as shown in Eq. 1-4 since |a|=α|k’|. The direction of vector 

a is the same as the vector c, and |a|=√𝑏2 + 𝑐2. Then, α is simply defined as a function of 𝜒. 
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𝜶 =
|𝒂⃗⃗ |

|𝒌⃗⃗ ′|
=

√𝒄⃗ 𝟐

|𝒌⃗⃗ ′|
=

√𝑸𝟐𝒔𝒊𝒏𝟐𝝌 + 𝟒𝑲𝟐𝒔𝒊𝒏𝟐𝜽 − 𝟒𝑲𝑸𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝝌 + 𝑸𝟐𝒄𝒐𝒔𝟐𝝌

|𝒌⃗⃗ ′|

=
√𝟖𝑲𝟐𝒔𝒊𝒏𝟐𝜽(𝟏 − 𝒄𝒐𝒔𝝌)

|𝒌⃗⃗ ′|
= 𝟐√𝟐𝑲𝒔𝒊𝒏𝜽

√(𝟏 − 𝟏 +
𝝌𝟐

𝟐
)

|𝒌⃗⃗ ′|
= 𝟐𝒔𝒊𝒏𝜽𝝌

=
𝑸

𝑲
𝝌 

Equation 1-4 

Therefore, the lattice tilt angle 𝜒 is proportional to α simply multiplied by the quantity 

K/Q, which is equal to 1/(2sinθ). 

𝜒 =
𝐾

𝑄
𝛼 =

𝛼

2𝑠𝑖𝑛𝜃
 

Equation 1-5 

 Outline of thesis 

This thesis describes extensive nanoscale characterization of materials with a focus on their 

nanoscale structure. The structure in turn influences properties such as the electronic band 

structure, the distribution of the ferroelectric polarization distribution, and charge carrier 

dynamics. The structural changes probed here are the result of fabrication processes involved in 

electrode deposition on Si/SiGe heterostructures, and nanoscale focused-ion-beam milling of the 

ferroelectric/dielectric superlattice heterostructures to fabricate the ferroelectric nanostructures. 

Other external stimuli consist of above-bandgap optical illumination, which generates 

photoexcited charge carriers. 
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Chapter 2 reports the discovery that the electrode deposition process in the formation of Si 

quantum dot devices on a Si/SiGe heterostructure results in the deformation of the quantum dots. 

Quantum devices employing this platform are based on the creation of the 2DEG layer at an 

interface between Si and SiGe. To operate the device, it is crucial to apply the electric fields 

vertically to the 2DEG layer to electrostatically define the depletion regions to form the nanoscale 

1D area that stores electrons. Electrode deposition on the Si/SiGe heterostructure is therefore 

essential to realize the quantum devices because its operation is also carried out using these 

electrode structures on top of the heterostructures.  

During film deposition, a complex microstructure growth mechanism accounts for stress 

generation and relaxation. During the deposition, metal adsorbates on semiconductors follows the 

Volmer-Weber mechanism [24], and there are three different stages that generates stresses. Initial 

compressive stress arises from island capillary force due to the surface stress while the sizes of 

islands are small [25,26]. Intermediate tensile stress originates from grain boundaries. When the 

grains of these islands grow and contact on another, they immediately form grain boundaries by 

rapidly filling in adjacent surfaces. A final mechanism is that atoms arriving on the surface on the 

surface during deposition are driven to grain boundaries, leading to compressive stress [26]. 

The stress from the electrodes is transferred through the underlying materials via electrode 

edges resulting in strain fields along the thickness, which changes the electronic band structure. 

X-ray nanodiffraction data shows that the 10-nm-thick Si QW layer is deformed in which the top 

and bottom interfaces of the QW experience different magnitudes of strain. This strain difference 

can be calculated from the shift of diffraction patterns on the detector plane. The strain calculated 

from the diffraction study is used to extract the extent of the change in band structure using 

deformation potential energy.  
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Chapter 3 reports the alignment of ferroelectric polarization nanodomains in PTO/STO 

superlattice heterostructures. PTO/STO superlattice thin films form 180° polarizations domains in 

which the polarizations are energetically stable with the formation of nanometer-size domains in 

random orientation. X-ray nanodiffraction reveals that these domains are aligned along the 

mechanical boundaries of elongated nanostructures fabricated using focused-ion-beam (FIB) 

lithography. More specifically, the domain diffuse scattering intensity in reciprocal space appears 

only at locations in reciprocal space corresponding to the directions of aligned domain patterns. In 

the unpatterned area, with its random domain distribution, the intensity forms a uniform ring. To 

understand the origin of the domain alignment, a thermodynamic theoretical approach is applied 

to calculate the free energy of the system.  

Finally, Chapter 5 describes a study of the temperature dependence of the relaxation of 

optical effects on the domain pattern. X-ray nanodiffraction shows that the intensity of the domain 

diffuse scattering disappears while the superlattice is optically illuminated and slowly recovers 

over a period of seconds to hundreds of seconds. The analysis of the experimental results links the 

relaxation to charge-carrier dynamics in PTO/STO superlattices. In this model, charge carriers are 

excited by the above-bandgap optical laser and transported by the internal electric fields arising 

from depolarization fields. This charge carriers screen the depolarization fields, which reduces the 

electrostatic energy of the system. Thus, the ferroelectric polarization nanodomains in the 

superlattice transform to a uniform polarization state [27]. Measurements of the rate of the 

recovery of the domain pattern following the end of the illumination provide a key test of the 

trapping model. 
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Chapter 2: Nanoscale strain in Si quantum wells 

 Introduction 

Silicon is a promising material for quantum electronics because its electronic properties 

include favorable band alignment at heterostructure interfaces and weak spin-orbit coupling 

resulting in long electron spin coherence times. Si QWs formed in Si/SiGe heterostructures confine 

electrons. Furthermore, quantum dot (QD) structures can be electrostatically defined by top gate 

electrodes that are used to apply electric fields. Residual stress in the electrodes can arise due to 

complex microstructure growth mechanisms such as island coalescence and can be elastically 

transferred to the substrate. This chapter reports the discovery of that this residual stress deforms 

the Si QWs and perturb the electronic energy landscape. The structural study was conducted using 

a tightly focused X-ray nanobeam, which allowed the curvature of the Si QW to be measured and 

its strain to be calculated from the curvature. 

2.1.1 Si quantum devices 

Si is the host semiconductor material for quantum devices confining electrons within the 

artificially and electrostatically defined quantum structures such as QWs and QDs. The fabrication 

processes for these quantum structures are well developed. The electronic states in Si can be 

manipulated using elastic strain or electric fields [1-4]. For example, the QD structures are often 

electrostatically defined within strained-Si quantum wells (sSQWs) formed in Si/SiGe 

heterostructures. Gate electrodes are used to manipulate the population of electrons within the 

QDs, and to perform complex operations such as determining the quantum state of electrons [5]. 

Determining the values of the gate voltages while operating devices is an essential step yet 

complicated when the electronic potential-energy landscape is disordered. One potential source of 
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electronic potential disorder is the electric potential from fixed charges, for example from surface 

oxide layers [6]. 

In addition to the previously considered sources of disorder in QW, there are additional 

effects associated with the formation and patterning of the electrodes. Residual stress in the metal 

gate electrodes is elastically transferred to the sSQW. As discussed in this chapter, the detailed 

spatial distribution of the distortion is consistent with an elastic model. The strain within the QW 

can be determined from the structural measurements by computing the curvature of the quantum 

well and the strain that results from the curvature. The results show that the strain difference 

between the top and bottom layers of the sSQW is high enough to cause energy landscape disorders 

and thus difficulties in tuning gate voltages. 

X-ray nanodiffraction was used to probe the magnitude of lattice deformation. 

Nanodiffraction is a non-destructive method to study structures that does not introduce any 

additional distortion during sample preparation. Nanodiffraction studies of the QWs are 

particularly sensitive to lattice tilt.  

As shown Figure 2-1, the electrodes are deposited in a closely spaced pattern on Si/SiGe 

heterostructures, and their end points converge to electrostatically define QDs. Detailed studies of 

lattice tilt were conducted within the two regions of interest in the QD device that are indicated by 

the dashed and solid boxes in Figure 2-1. These boxes correspond to regions in which the lattice 

tilt is produced by (i) a single electrode connecting the QD to external contacts (dashed box) and 

(ii) near the set of gate electrodes used to define the QD device (solid box).  

The results can be understood by systematically moving from simple to progressively more 

complex electrode geometries. First, the magnitude of the lattice tilt was measured in the sSQW 
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near a single linear gate electrode. The corresponding strain differences of sSQW were extracted 

from the curvature resulting from lattice tilt. The results were compared with an elastic calculation 

using the edge force model to determine the interface residual stresses immediately beneath the 

electrode. A second series of measurements were conducted in the gate electrode region, which 

exhibits a more complex variation arising from the same set of interface stresses. 

2.1.2 Si quantum well in Si/SiGe heterostructures  

A schematic of the Si/SiGe heterostructure is shown in Figure 2-2. The layer sequence 

consists of a several micrometer-thick relaxed Si1-xGex layers grown on a Si (001) substrate with 

a linearly graded Ge concentration from x = 0 to x = 0.3. A Si/SiGe heterostructure consisting of 

layers with the following thicknesses and composition was grown on this relaxed layer. It consisted 

of a 91 nm Si0.7Ge0.3 layer, the 10 nm sSQW, a 300 nm Si0.7Ge0.3 buffer, and a 5 nm Si cap. The 

lattice mismatch between Si and the relaxed SiGe layer leads to a 1% biaxial in-plane strain in the 

sSQW. Palladium (Pd) metal gate electrodes were defined and deposited using electron beam 

Figure 2-1: SEM image of a Si QD device showing the regions of interest in which x-ray 

nanodiffraction was used to probe the structural distortion. The regions of interest for the 

x-ray nanodiffraction are outlined with the two boxes. The dashed box indicates a region 

where a single linear gate electrode is deposited, and the solid box shows where many gate 

electrodes are closely deposited to make the electrostatically defined QD region. 
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lithography and electron beam evaporation, respectively, to electrostatically define QD structure. 

The thickness of Pd electrode was 20 nm. The sSQW layer is curved with the radius of curvature 

(R) as shown in Figure 2-2. The curvature leads to a strain difference between the bottom and top 

of sSQW layer (εbottom - εtop). The details of this elastic configuration are discussed in Chapter 

2.4.1. 

It is important to note that the lattice is also distorted in the regions far from the electrodes 

due to effects related to the relaxation of the SiGe layer. The SiGe layer that relaxes during 

deposition via dislocation formation that results in a characteristic cross-hatch structure [20, 21]. 

This plastic deformation during Si/SiGe heteroepitaxy induces a structural deformation of sSQW. 

Due to the bending, a magnitude of the strain difference over the SQW thickness reaches 

approximately 10-6, resulting in conduction band change by 0.014 meV [22]. 

Figure 2-2: Cross section of the Si/SiGe heterostructure and Pd gate electrode. The sSQW is 

deformed with electrode-stress-induced radius of curvature R due the transferred stress from the 

electrode. The strain difference between bottom and top layer of SQW is defined as t/R. 
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 X-ray diffraction  

2.2.1 Simulated diffraction patterns 

A θ-2θ coupled scan of Si/SiGe heterostructures was simulated to provide insight into 

diffraction features around 004 sSQW Bragg reflections along the out-of-plane scattering vector 

(qz). Structural deformations were not considered in the simulation. SiGe layers grown on Si 

substrate are usually tilted with respect to the substrate due to a substrate miscut [23] and sSQW 

layer grown on SiGe shares the same orientations with SiGe layer [24]. Therefore, in the 

simulation, the Si substrate was excluded because the substrate 004 Bragg reflection is located in 

a different qz direction than the SiGe and sSQW layers. 

Figure 2-3 shows a simulated θ-2θ coupled scan of a 91-nm-thick SiGe and a 10-nm-thick-

sSQW. The simulation was conducted under conditions corresponding to the use of collimated or 

“parallel” incident x-ray beam. The simulation employed the kinematic scattering lattice sum 

method [25]. 

There are several important aspects of the simulation of the diffraction pattern. In the 

kinematic scattering approximation, the incoming X-rays are elastically scattered by the crystal 

lattice without absorption or multiple scattering. The diffracted intensity was calculated using the 

multilayer lattice sum method [25]. This sum considers a linear addition of several lattice sums, 
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one from each layer. The appropriate x-ray phase factor according to the position of the layer along 

the thickness is also considered.  

The simulation exhibits a series of diffraction features as shown in Figure 2-. The specular 

position of 004 Bragg reflections from the SiGe and sSQW layers are at qz = 4.58 Å -1 and 4.69 Å -1, 

respectively. The peak intensity of the Bragg reflection from the top SiGe layer is a factor of 150 

greater than the peak intensity of the sSQW layer. Thickness fringe patterns oscillating with two 

different spatial frequencies are apparent in Figure 2-. The spacing of these fringes originates from 

thicknesses of the top SiGe and sSQW layers. A more detailed, quantitative comparison between 

the thickness fringes in the X-ray diffraction patterns is discussed in Chapter 2.3. 

The diffraction patterns of Si/SiGe heterostructures were also simulated considering 

kinematic scattering of the focused X-ray beam produced by zone plate optics [26]. The result of 

Figure 2-3: Simulated θ-2θ coupled scan of the sSQW and the top SiGe. The position of the Bragg 

peaks from the top SiGe and the sSQW along qz are at 4.58 Å -1 and 4.69 Å -1, respectively. Narrow 

and broad oscillating fringe components are from the thicknesses of the top SiGe and sSQW layers, 

which are 91 nm and 10 nm, respectively. 
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the simulated coherent diffraction pattern in comparison with the experimentally acquired coherent 

diffraction data is discussed in Chapter 2.3. 

2.2.2 X-ray fluorescence microscopy  

 Compositional information can be gathered from a sample by X-ray fluorescence. When 

the incoming X-ray beam has sufficiently high energy relative to the binding energy of the core 

electrons of target atoms, the core electrons are knocked out from the shells, and the atoms become 

ionized. Outer shell electrons fall into the empty core states, releasing energy in the form of 

photons. This emission of light is referred to as fluorescence, a radiation process for which the 

photon energy is determined by the characteristic energy difference between the initial and final 

electron states [27].  

The fluorescence signals in the experiments presented in this chapter were recorded by a 

silicon drift diode fluorescence detector. Fluorescence photons excite the electrons in the diode, 

and the excited electrons drift to the anode preamplifier. The number of excited electrons is 

proportional to the energy of the characteristic fluorescence x-ray photon. The output voltage of 

the preamplifier is digitized and sorted by pulse height in the corresponding channels of a 

multichannel analyzer. Choosing a value from the channel from the spectra recorded in a scanning 

the X-ray map provides an x-ray fluorescence microscopy image. The images provide a map of 

the distribution of the selected element on the sample surface.  
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In this experiment, a Vortex-EX fluorescence detector was used to measure the X-ray 

fluorescence signal. The Pd M-edge fluorescence signal was selected for x-ray fluoresence 

microscopy maps in order to determine the positions of the electrodes and choose the areas of 

interest for sturctural studies. An advantage of this approach is that it allows important areas, such 

as the QD regions, to be determine precisely. Figure 2- shows a map of Pd M-edge fluorescence 

intensity indicating the location of the Pd electrodes in the QD device region. 

Figure 2-4: Map of the Pd M-edge fluorescence intensity in the quantum device region using x-

ray nanobeam fluorescence microscopy. The fluorescence intensity becomes bright when the x-

ray nanobeam illuminates the middle of each electrode, showing that nine Pd gate electrodes are 

deposited. 
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 X-ray nanodiffraction patterns arising from deformation in crystal  

2.3.1 Shift of diffraction patterns due to lattice tilts  

An x-ray detector image of a Si/SiGe heterostructure diffraction pattern acquired at the 

Bragg angle of 27.64° is shown in Figure 2-(a). One of the main features of the diffraction pattern 

is the set of vertical thickness fringes resulting from the 91-nm thick SiGe layer. The circular 

shadow observed in the middle of the diffraction pattern is from the center stop. The fringe spacing 

corresponds to a reciprocal-space separation (Δqz) of 0.007 Å -1. The thickness fringe arising from 

the sSQW is predicted to be Δqz = 0.063 Å -1, and does not appear in the span of the diffraction 

pattern because the focused X-ray angular convergence of 0.24° covers a wavevector range of only 

Δqz = 0.038 Å -1.  

Figure 2-5: (a) Detector image of a diffraction pattern of the sSQW. Because the detector can 

capture two-dimensional reciprocal space information, the thickness fringe along the Δ2θ-

direction is also visible. The thickness fringe arising from the 91-nm thick SiGe layer is 

superimposed on the sSQW Bragg peak, and the shadow of the center stop is also visible in the 

middle of the diffraction pattern. (b) Stack of the Tilt-direction intensity line profiles. The x-

ray nanobeam was laterally displaced across the electrode at fifty locations. The diffraction 

patterns are summed along Δ2θ-direction to calculate the centroid along the Tilt direction. 

The summed diffraction patterns are stacked up on each other. The green curve exhibits change 

in centroid. 
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Structural deformation leads to a shift of the diffraction pattern on the detector. Surface 

features such as electrodes can impose lattice tilt due to transferred interface stress, which causes 

shifts in the diffraction pattern. The corresponding direction of the shift can be a combination of 

the Tilt- and Δ2θ-directions on the detector plane depending upon the direction of the deformation. 

For example, if the axis of rotation of the lattice tilt is parallel to the propagating X-ray beam 

direction, the diffraction pattern shifts along the Tilt-direction.  

Figure 2-(b) shows the spatial variation of the shift of the diffraction pattern along the Tilt-

direction. The X-ray nanobeam was laterally displaced along a line across the electrode and x-ray 

diffraction patterns were an acquired at a series of locations. Each diffraction pattern was 

integrated along the Δ2θ-direction to produce a plot of the intensity as a function of the angle 

spanning the Tilt-direction. These Tilt-direction intensity line profiles were then stacked to make 

the plot shown in Figure 2-(b). The map clearly shows that there is a shift of the diffraction patterns 

along the Tilt-direction as a function position near the electrode. 

The magnitude of the shift of diffraction patterns was measured by calculating the centroid 

of the Tilt-direction intensity line. The centroid is given by: 

𝑿𝒄 =
∑ 𝑿𝒊𝑰𝒊

∑ 𝑰𝒊
 

Equation 2-1 

Here Xc is the centroid pixel position along the Tilt-direction of the diffracted intensity and Ii is the 

intensity at the pixel position Xi along the Tilt-direction. The profile of the centroid pixel positions 

is shown as the green curve in Figure 2-(b). 
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2.3.2 Fourier transform of thickness fringes in diffraction patterns  

2.3.2.1 Thickness fringe visibility and Fourier transform intensity  

In addition to the shift of the diffraction patterns, the electrodes-induced deformation leads 

to additional distinctive features associated with the thickness fringes of the x-ray diffraction 

patterns. In areas far from the tilted region, the SiGe thickness fringes appear in the diffraction 

pattern acquired at the Bragg angle of 27.64°, as shown in Figure 2-(a), which is superimposed 

over the broad sSQW fringe.  

The experimental diffraction patterns were compared with simulated diffraction patterns. 

In order to do this, the coherent diffraction patterns of sSQW were simulated using a method 

described by Ying et al. [26]. Figure 2-(b) shows a simulated diffraction pattern that was computed 

using conditions matching the experiment. The experimental and simulated diffraction patterns 

exhibit the same thickness fringe patterns from the SiGe layer and have the same general 

distribution of diffracted intensity. 

Figure 2-6: Comparison between experimental diffraction pattern and simulation, and between 

the diffraction patterns acquired (a) far from the electrode and (c) at the tilted region. (b) 

Simulated diffraction pattern using the method of Ref [26] and conditions corresponding to (a).  
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In the region near the electrodes, however, the experimental diffraction patterns were far 

more complicated than in the regions far from the electrodes. Figure 2-(c) shows a diffraction 

pattern acquired at the Bragg angle of 27.64° in a tilted region near an electrode. The diffraction 

pattern only again arises from the sSQW but the SiGe thickness fringes are not apparent. The 

interference producing the fringe features does not occur because the top and bottom interfaces of 

the SiGe layer are not parallel to each other in the tilted region. The diffraction patterns shown in 

Figure 2-(a) and 2-6(c) are located at different positions on the detector, because the diffraction 

pattern acquired at tilted regions shifted along the Tilt-direction due to lattice tilts as discussed in 

Chapter 2.3.1. 

Figure 2-7: (a) Intensity line profiles of diffraction patterns integrated along the Tilt-direction of 

the detector, acquired in regions far from the tilted region (blue) and at the tilted region (orange). 

(b) Fourier transform intensities of the two intensity line profiles and the models shown in (a) as 

a function of spatial frequency, Δqz. The Fourier transform intensity at Δqz = 0.007 arises from 

the thickness fringe of the top SiGe layer, and the results of the Fourier transform of the model 

agree, as shown in the dotted curves. 
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In addition to the Tilt-direction intensity line profiles, Δ2θ-direction intensity line profiles 

of diffraction patterns may also be plotted by integrating diffraction pattern along the Tilt-

direction. Figure 2-(a) shows the Δ2θ-direction intensity line profiles acquired far from the tilted 

regions (blue) and with the x-ray beam located at a tilted region (orange). The thickness fringes 

from the SiGe layer are visible in the Δ2θ-direction intensity line profile from the diffraction 

pattern acquired far from the tilted regions, but they are not visible in the diffraction pattern 

acquired at the tilted regions. 

The Δ2θ-direction intensity line profiles can be used to confirm that the thickness fringe 

periodicity is missing visibility by computing the Fourier transform intensity of the fringe patterns. 

It is assumed that the Fourier transform intensity of the fringe patterns decreases as the fringe 

patterns disappear from the diffraction pattern. To confirm whether or not the change in Fourier 

transform intensity of the fringe patterns originates only from vanishing fringe patterns, the Δ2θ-

direction intensity line profiles were modeled, and their Fourier transform intensities are compared 

with the experimental data.  

The Fourier transform intensity at a spatial frequency matching the thickness fringe spacing 

Δqz = 0.007 Å -1 can be used to verify the fringe visibility, as indicated in Figure 2-(b). The Fourier 

transform intensity at Δqz = 0.007 Å -1 decreases as the thickness fringes disappear, and it becomes 

less than 0.14 a.u. when the thickness fringe is completely invisible. The results of the model fit 

well with the measured the Δ2θ-direction intensity line profiles, and the trends of their Fourier 

transform intensity at Δqz = 0.007 Å -1 indicates that the decreasing Fourier transform intensity 

originates from the vanishing thickness fringe in the diffraction pattern acquired in the tilted 

regions. 
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2.3.2.2 Fringe intensity maps and fringe intensity variation in the in quantum dot 

device region  

In Figure 2-(b), the Fourier transform intensity at Δqz = 0.007 Å -1 is a factor of 

approximately 10 smaller when the thickness fringes are absent. An advantage of using the Fourier 

transform approach to analyze the structural deformation is that the visibility of the fringe pattern 

can be rapidly measured for large number of diffraction patterns.  

Figure 2-(a) shows a map of the Pd M-edge fluorescence intensity within the region of the 

dashed box in Figure 2-1, indicating the position of the single Pd electrode. Tracking the change 

in Fourier transform intensities at Δqz = 0.007 Å -1, a map of fringe visibility in Figure 2-(b) shows 

that the Fourier transform intensities are approximately a factor of 10 lower under the electrodes 

than in the region far from the electrodes, indicating that the thickness fringes disappeared under 

the electrode due to the structural deformation. The Fourier transform intensity is also reduced at 

Figure 2-8: Map of the Pd M-edge fluorescence intensity in the region of a single linear Pd 

electrode using x-ray nanobeam microscopy. The intensity becomes bright when the x-ray beam 

illuminates the middle of the electrode. (b) Fourier transform intensity at a fringe spacing of Δqz 

= 0.007 Å-1, exhibiting the disappearance of the SiGe layer interference fringes in the tilted 

region. 
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the boundaries of the cross-hatch regions far from the electrode. The fringe visibility map is thus 

a strong indicator of structural deformation in the sSQW. 

Figure 2-(a) shows the Fourier transform intensity at a spatial frequency of Δqz = 0.007 Å -

1 in the area of the QD, matching the region shown in Figure 2-. In the QD device region, the 

electrodes are tightly patterned and the stress fields overlap, producing complex deformation. The 

quantum QDs is in the bottom left corner (black box) Figure 2-(a). The Fourier transform intensity 

is too low to recognize the locations of individual electrodes. 

Figure 2-9: Fourier transform intensity at fringe spacing of Δqz = 0.007 Å -1 for the areas shown 

in Figure 2-. The black box indicates the QD region where many electrodes are closely deposited, 

and the Fourier transform intensity of this region is shown in (b). 



28 

 

2.3.2.3 Deducing the angular shift of diffraction pattern from the Fourier transform 

phase  

There is also structural information contained in the phase Fourier transform of the 

diffraction patterns. The Fourier transform phase can be used to estimate the magnitude of the 

angular shift of the diffraction patterns along the Tilt-direction. The analysis using the Fourier 

transform complements the centroid approach described above. The phase information of the 

particular spatial frequency is obtained by calculating the arctangent of the ratio of imaginary to 

real parts of the Fourier transform. Changing the unit of the phase from degrees to the number of 

pixels can be achieved by multiplying the phase information in degrees by
# 𝒐𝒇 𝒕𝒐𝒕𝒂𝒍 𝒑𝒊𝒙𝒆𝒍𝒔

𝟑𝟔𝟎×𝒔𝒑𝒂𝒕𝒊𝒂𝒍 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚
.  

Figure 2-10 shows the stack of the Tilt-direction intensity line profiles that was previously 

shown in Figure 2-(b). The shift calculated using the centroid line is plotted as the green line 

overlaying the shifts. The Fourier transform phase information of the Tilt-direction intensity line 

profiles is shown the blue line for comparison with the centroid approach. The phase information 

reasonably matches the centroid line in Figure 2-10. However, the width of the Tilt-direction 

intensity line profile significantly changes in the more deformed regions, which can result in 

different values of spatial frequency and slightly different structural information and thus we used 

the shifts from the centroid for our subsequent analysis. 
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 Electrode-stress-induced deformation  

The process of depositing the metal electrodes results in stress that results from a variety of 

mechanisms. The polycrystalline metal electrodes form via an island coalescence process during 

deposition [29, 30]. The islanding process is often described as the Volmer-Weber mechanism of 

thin film growth [28]. Surface-feature-stress-induced structural deformations have previously been 

probed in other semiconductor systems using various x-ray diffraction studies [8, 9, 11].  

2.4.1 Mechanical elastic model  

An analytical elastic model was employed to interpret the measured lattice tilts. Lattice tilts 

considered by I. A. Blech, et al. [31] are based on rotations of (H00) planes, and are equivalent to 

rotations of (00L) planes, which is the case in our experiments. The model selected for the analysis 

was termed the edge-force model. The primary assumption of the edge-force model is that the 

Figure 2-3: Stack of the Tilt-direction intensity line profiles for the comparison between two 

methods to track the shift of the diffraction pattern. The centroid information (green) already 

introduced in Figure 2- (b) is compared with the phase information (blue) extracted from the 

Fourier transform of the diffraction patterns.  
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residual interface stress underneath the electrodes is elastically transferred to the substrate through 

the electrode edges [1]. It is supposed that the lattice tilts arise only from the elastically transferred 

residual stresses, and that the axis of rotation is parallel to the electrode length direction. As 

illustrated in Figure 2-11, the electrode is assumed to be infinite along the y-axis, and lattice 

displacements only occur along the x-axis. The contribution of the spatial variation in plastic 

deformation is not considered. Ultimately, analysis using this model allows the stress imparted on 

the sSQW by the Pd electrode to be inferred from an elastic analysis of the distortion. 

The model considered of a 20-nm-thick and 230-nm-wide infinitely long Pd electrode 

deposited on single SiGe layer. The use of a single SiGe layer is an appropriate approximation 

given the thinness of the sSQW layer. It also simplifies the problem by neglecting the interface 

Figure 2-4: Si/SiGe heterostructure showing lattice displacements along the x-axis (u), which is a 

function of the two radial distances r1 and r2 measured in the x-z plane.  
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between SiGe layer and sSQW layer, at which two different sets of elastic constants would be 

needed.  

The lattice displacement along the x-axis is defined as u and is a function of two radial 

distances, r1 and r2 from the two edges of the electrodes in the x-z plane, as shown in Figure 2-11. 

The lattice tilt can be calculated by taking the first derivative of u with respect to the depth using: 

𝒅𝒖(𝒓𝟏, 𝒓𝟐)

𝒅𝒛
=

𝟐𝑺𝒛(𝟏 + 𝒗)

𝝅𝑬
{(𝟏 − 𝒗) [

𝟏

𝒓𝟐
𝟐

−
𝟏

𝒓𝟏
𝟐

] + [
𝒙𝟐

𝟐

𝒓𝟐
𝟒

−
𝒙𝟏

𝟐

𝒓𝟏
𝟒

]} 

Equation 2-2 

Here S is the interface residual stress-thickness product, ν is Poisson’s ratio, and E is the Young’s 

modulus of SiGe.  

A 3D drawing of the depth-dependence of the lattice tilt angle is shown in Figure 2-12. 

The sSQW position is outlined with a black box at a depth of 100 nm. In the model, the lattice tilt 

angles are ±0.13° immediately under the electrode edges. The magnitude of the tilt decreases 

through the thickness and becomes around 0.03° at the depth of the sSQW. A more detail analysis 

of the results is discussed in Chapter 2.4.4. 
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2.4.2 Apparent position of electrodes and Si quantum well  

There is a 90-nm offset in position between the apparent center of the electrode in the x-

ray fluorescence microscopy map in Figure 2-(a) and the apparent center of the distortion in the 

diffraction maps, for example as in Figure 2-(b). This effect results from the experimental X-ray 

diffraction geometry because the depths of the electrode and sSQW are different. The incident X-

ray beam at the Bragg angle of 27.64° illuminates both the electrode and the sSQW under the 

electrode at laterally different positions, as illustrated in Figure 2-13(a). The position of the red dot 

in Figure 2-13(a) the particular location where the incident x-ray beam intercepts the surface at the 

Bragg angle. The incident beam at this location is labeled with wavevector ki, which illuminates 

the sSQW buried immediately beneath the electrode. The x-ray beam ki’ represents the location of 

the beam at a different position in the scan, at which beam intersects the edge of electrode and 

Figure 2-5: 3D map of lattice tilt angles calculated from the first derivative of u in terms of the 

depth z. The magnitude of lattice tilts under electrode is depth dependent, and it becomes 0.03° 

approximately 100 nm below the surface at which sSQW is located (outlined with a black box). 
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generates the fluorescence signal. The lateral distance between the surface locations intersected by 

ki and ki’ is (80 nm) tan-1(27.49˚) = 153 nm.  

 The experimentally observed offset is slightly more complicated because the orientations 

of the footprint of the incident X-ray and the direction of the electrode are not usually parallel in 

the experiment, rather they differ by angle, δ. In Figure 2-13(b), a plan view of the diffraction 

geometry shows the incident X-ray, ki’’, deviates from the electrode length direction by δ. 

Considering δ = 45°, which is the experimental condition, a theoretical distance between the red 

dot and the electrode (Δx) is calculated to be 153 nm · cos45° = 108 nm. In the experiment, the 

observed Δx was 90 nm, which is close to the theoretical difference. 

2.4.3 Rotation matrix  

 As discussed in Chapter 2.4.1, the electrode is infinitely long along the y-axis, and the 

lattice planes are displaced mainly along the x-axis which is perpendicular to the electrode length 

direction. Owing to lattice displacements, lattice tilts occur with respect to the y-axis as the axis of 

Figure 2-6: (a) Cross-sectional diagram of X-ray diffraction geometry explaining the apparent 

offset of the apparent electrode positions between Figures. 2-8(a) and 2-8(b). The red dot is a 

particular surface location at which the incident x-ray ki, illuminates sSQW buried immediately 

beneath the electrode. ki’, is another incident x-ray at which fluorescence signal from electrode is 

initially generated. (b) Plan view of experimental X-ray diffraction geometry. The direction of 

incident X-ray and the electrode direction different by an angle δ provides Δx = 108 nm when 

considering the approximate value of the angle δ of 45°. 
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rotation in which the diffraction pattern on the detector shifts only along the Tilt direction. In the 

experiment, however, the diffraction pattern on the detector shifts not only along the Tilt direction 

but also the Δ2θ direction because the incident X-ray and the electrode length directions are not 

usually parallel as discussed in Chapter 2.4.2.  

The shifted diffraction pattern on the detector consisting of both components along the Tilt-

and Δ2θ-directions must be decoupled to calculate the lattice tilt angle only associated with the 

lattice displacement along the x-axis and perpendicular to the electrode length direction. First, the 

shift of the centroid of the diffraction pattern along both the Tilt- and Δ2θ-directions was 

calculated. Then the change in the centroid of diffraction patterns was converted to the 

Figure 2-7: Illustration of a Cartesian coordinate Tilt-Δ2θ plane. P(Tilt, Δ2θ) is a position of 

diffraction pattern on detector. P(α+, α‖) is a new position on α+-α‖ plane converted by a rotation 

matrix. The α+ and α‖ are directions perpendicular and parallel to electrode length direction, 

respectively. The shift in the diffraction pattern on the detector is determined by computing the 

shift of centroid of the diffraction patterns on the Tilt-Δ2θ plane and then reconsidered on the α+-

α‖ plane by the rotation matrix. 
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corresponding tilt angle perpendicular (α+) or parallel (α‖) to the electrode direction using the 

rotation matrix described in Eq. 2-3. Based on this assumption, the angle between the electrode 

and the X-ray is δ is shown in Figure 2-14. 

𝑃(0, 𝛼‖) = 𝐴𝐵̅̅ ̅̅ + 𝐵𝑂̅̅ ̅̅ = 𝑃(𝑇𝑖𝑙𝑡, 0)𝑠𝑖𝑛𝛿 + 𝑃(0, 𝛥2𝜃)𝑐𝑜𝑠𝛿 

𝑃(α+, 0) = −(𝐵𝐷̅̅ ̅̅ − 𝐶𝐷̅̅ ̅̅ ) = 𝑃(𝑇𝑖𝑙𝑡, 0)𝑐𝑜𝑠𝛿 − 𝑃(0, 𝛥2𝜃)𝑠𝑖𝑛𝛿 

(
𝑃(0, 𝛼‖)

𝑃(α+, 0)
) = (

    𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝛿
−𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿

) (
𝑃(0, 𝛥2𝜃)

𝑃(𝑇𝑖𝑙𝑡, 0)
) 

Equation 2-3 

2.4.4 Lattice tilt maps  

In the X-ray nanodiffraction experiment, the structural deformation of the sSQW was 

studied in detail in the region of an isolated single Pd electrode. The location of this electrode on 

the sample is indicated by the dashed box in Figure 2-1. Figure 2-15 shows a map of the lattice tilt 

angle in the same regions as the fluorescence map shown in Figure 2-(a). The tilt angle reaches 

±0.03° at the two electrode edges, and the sign of tilt angle rapidly changes at the middle of the 

electrode. Based on the sign of the tilt angle, the sSQW planes have the concave-down bending 

beneath the electrode. The slight mismatch of the electrode positions in the fluorescence and the 

tilt images is due to the difference in the depth between the electrode and the sSQW as discussed 

in Chapter 2.4.2 above.  
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 The elastic deformation in the region where several electrode patterns define the QDs is 

more complicated than for a region of a single electrode. Figure 2-16(a) shows a Pd fluorescence 

map in the QD region indicated by the solid box in Figure 2-1. The locations of electrode patterns 

are outlined with the dotted lines, and the asterisk indicates the position of a QD. The tilt magnitude 

of the same region is shown in Figure 2-16(b). The tilt magnitude reaches up to 0.05° at the left 

side of the map where the five electrodes (dotted lines) are closely spaced. This magnitude is a 

factor of 2.5 larger than at the single electrode. The structural deformation is larger in this area due 

to the overlap of the stress fields of adjacent electrodes, as previously observed at a much larger 

scale in metal test patterns on Si [8].  

Figure 2-8: Map of the sSQW lattice tilt angles in a single electrode area indicated by the dotted 

box in Figure 2-1. Lattice tilt angles are measured by computing shifts in diffraction patterns from 

sSQW, for which the maximum magnitude becomes 0.03° under the electrode. The sign of lattice 

tilt changes at the middle of the electrode, which might arise from lattice deformations by 

elastically transferred electrode stress. 
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2.4.5 Strain difference  

2.4.5.1 Curvature and strain  

The difference in strains between the bottom and top of sSQW layer can perturb the local 

energy band structure. The magnitude of this effect can be comparable to the electron charging 

energy in the QD device [16, 22]. Figure 2-17 shows the bending of the sSQW due to the lattice 

Figure 2-9: (a) Map of the Pd M-edge fluorescence intensity in the QD region. Many electrodes 

are closely deposited, as outlined with dotted lines. The asterisk indicates the position of a QD. 

(b) Tilt magnitude map of the sSQW lattice planes in the same area. The maximum tilt magnitude 

is 0.05°, which is a factor of 2.5 larger than at the single electrode. 

Figure 2-10: Diagram showing the concave-up bending of sSQW (gray) arising from the lattice 

tilt under the electrode with the radius of curvature (R), thickness (t), and the tilt angle (φ). Strain 

neutral plane is indicated by the dotted line inside gray box. Z is the distance between the middle 

plane and the top layer. 



38 

 

tilt under the electrode. The radius of curvature and the thickness of the sSQW are defined as R 

and t, respectively. 

In the experiment, the curvature, R can be measured by calculating the first derivative of 

the lattice tilt angles (φ) in terms of lateral distance (dφ/dx), which is equivalent to d/dx (du/dz) in 

the edge force model. The strain difference (εbottom – εtop) is estimated by calculating t/R as derived 

in Eq. 2-4. When φ is small, the lateral length of the neutral plane of the sSQW is φR. The strains 

are the difference in the lateral length as a result of bending as compared to that of at the neutral 

plane, which are -z/R and (t-z)/R for εtop and εbottom, respectively. The sign of the strain difference 

under the electrode in the experiment was negative due to a concave-down bending of the sSQW. 

𝜀𝑡𝑜𝑝 =
𝜑(𝑅 − 𝑧) − 𝜑𝑅

𝜑𝑅
= −

𝑧

𝑅
 

𝜀𝑏𝑜𝑡𝑡𝑜𝑚 =
𝜑(𝑅 − 𝑧 + 𝑡) − 𝜑𝑅

𝜑𝑅
=

(𝑡 − 𝑧)

𝑅
 

𝜀𝑏𝑜𝑡𝑡𝑜𝑚 − 𝜀𝑡𝑜𝑝 =
(𝑡 − 𝑧) + 𝑧

𝑅
=

𝑡

𝑅
 

Equation 2-4 

2.4.5.2 Strain difference in quantum dot device region  

Figure 2-18(a) shows the measured lattice tilt angle (solid) and modeled tilt angle (dashed) 

as a function of the distance from the electrode. The center of the electrode is at position zero. The 

modeled tilt angle is calculated from the displacement of the lattice planes at a depth of 100 nm 

under the electrode. A stress-thickness product of 80 GPa·Å  provides the best fit to the 

experimental data. The magnitude of the stress-thickness products is similar to the stress reported 
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in other metal thin films [29, 30, 32]. The small difference in the tilt angle between the start and 

end points of the blue curve in Figure 2-18(a) originate from differences in the plastic relaxation 

of the bottom SiGe layer.  

The curvature of the sSQW is numerically extracted both from the measured and modeled 

tilt angles and used to calculate the strain difference between the bottom and top of the sSQW. At 

the position zero, which is the center of the electrode, the average tilt angle abruptly changes the 

sign. The steep change results in the maximum strain difference of 4×10-5, corresponding to a 

radius of curvature of 25 μm. The maximum strain difference is a factor of 10 larger than the 

previously reported one, which arises from the plastic relaxation [22]. 

The strain difference in the region of the QD is determined using the two-dimensional 

curvature K2D as defined in Eq. 2-5 and Eq. 2-6. The tilt angle φ both along the Tilt and Δ2θ 

directions are considered. In addition, φ along each direction contains two-dimensional 

information in positions, x and y with the interval Δx or Δy of 50 nm. 

𝐾2𝐷(𝑥, 𝑦) = ∇
∇𝜑(𝑥, 𝑦)

|∇𝜑(𝑥, 𝑦)|
=

𝜑𝑥𝑥𝜑𝑦
2 − 2𝜑𝑥𝜑𝑦𝜑𝑥𝑦 + 𝜑𝑦𝑦𝜑𝑥

2

(𝜑𝑥
2 + 𝜑𝑦

2)1.5
 

Figure 2-18: Plots of the lattice tilt and strain difference of sSQW (gray) arising from the bending 

curvature under the electrode. 
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Equation 2-5 

where 

𝜑𝑥 =
𝜑𝑇𝑖𝑙𝑡(𝑥 + ∆𝑥, 𝑦) + 𝜑𝑇𝑖𝑙𝑡(𝑥 − ∆𝑥, 𝑦)

2∆𝑥
 

𝜑𝑦 =
𝜑∆2𝜃(𝑥, 𝑦 + ∆𝑦) + 𝜑∆2𝜃(𝑥, 𝑦 − ∆𝑦)

2∆𝑦
 

𝜑𝑥𝑥 =
𝜑𝑇𝑖𝑙𝑡(𝑥 + ∆𝑥, 𝑦) − 2𝜑𝑇𝑖𝑙𝑡(𝑥, 𝑦) + 𝜑𝑇𝑖𝑙𝑡(𝑥 − ∆𝑥, 𝑦)

∆𝑥2
 

𝜑𝑦𝑦 =
𝜑∆2𝜃(𝑥, 𝑦 + ∆𝑦) − 2𝜑∆2𝜃(𝑥, 𝑦) + 𝜑∆2𝜃(𝑥, 𝑦 − ∆𝑦)

∆𝑦2
 

𝜑𝑥𝑦 =
𝜑𝑥𝑦,1 + 𝜑𝑥𝑦,2

2
 

𝜑𝑥𝑦,1 =
𝜑𝑇𝑖𝑙𝑡(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) + 𝜑𝑇𝑖𝑙𝑡(𝑥 + ∆𝑥, 𝑦 − ∆𝑦) − 𝜑𝑇𝑖𝑙𝑡(𝑥 − ∆𝑥, 𝑦 + ∆𝑦) − 𝜑𝑇𝑖𝑙𝑡(𝑥 − ∆𝑥, 𝑦 − ∆𝑦)

4∆𝑥∆𝑦
 

𝜑𝑥𝑦,2 =
𝜑∆2𝜃(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) + 𝜑∆2𝜃(𝑥 − ∆𝑥, 𝑦 + ∆𝑦) − 𝜑∆2𝜃(𝑥 + ∆𝑥, 𝑦 − ∆𝑦) − 𝜑∆2𝜃(𝑥 − ∆𝑥, 𝑦 − ∆𝑦)

4∆𝑥∆𝑦
 

Equation 2-6 

The two-dimensional strain difference determined from the measured tilt angle information 

is shown in Figure 2-19(a). In this region, the strain difference measured at the asterisk is 

significantly larger than the one measured at the single electrode region. In Figure 2-19(b), the 

strain differences measured at the single electrodes and the QD regions are directely compared. 

The strain difference values along the bottom of the tilt image in Figure 2-15 and the vicinity of 

the asterisk in Figure 2-19(a), are used for the comparison between the single electrode and the 

QD regions, respectively. The strain difference from the QD region is a factor of 10 larger than 
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that from the single electrode region. The energy variation in QD region is therefore 1.4 meV, 

which is on the same order of magnitude of the charging energy in few-electron QDs. 

 Conclusion  

In conclusion, significant structural deformation of sSQW in Si/SiGe heterostructures is 

induced both by the plastic relaxation of the SiGe substrate and residual interface stresses imparted 

from the deposited Pd gate electrode on the surface. The lattice tilt resulting from the distortion 

can be modeled by a mechanical elastic edge force model. The model assumes that residual stress 

is transferred through the electrode edges and the lattice planes are displaced perpendicular to the 

Figure 2-19: (a) Map of the strain difference across the thickness of the sSQW in the QD region. 

(b) Comparison between strain differences induced by the single electrode along with the intrinsic 

tilt from plastic relaxation of the SiGe layer and the QD electrodes near the region indicated by 

the asterisk in (a). 
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electrode length direction. The lattice tilt of the sSQW layer is caused by different magnitudes of 

lattice displacements along the depth direction.  

X-ray nanodiffraction was employed to measure the lattice tilt of the sSQW by tracking 

the shift in diffraction patterns of sSQW layer. Both experimental data and the model indicate that 

the sSQW layer is curved due to the lattice tilt, resulting in a strain difference between the bottom 

and top of sSQW layer up to 10-4 over the sSQW thickness in QD region. This is a factor of 100 

greater than the strain difference arising from the SiGe substrate plastic relaxation. This variation 

in strain contributes to the potential energy landscape difference of 1.4 meV in gate electrode-

defined quantum devices, which is on the same order of magnitude of the charging energy in few-

electron QDs. Thus, gate electrode-stress-induced strain variation leads to a substantial source of 

disorder in gate electrode-defined semiconductor quantum electronics. 

The Fourier transform of the diffraction pattern provides both Fourier transform intensity 

and phase information of the Tilt- and Δ2θ-direction intensity line profiles and enables the 

characterization of structural deformation using fringe visibility and tracking shift of diffraction 

patterns. However, in the QD device region, the fringe visibility method lacks sufficient resolution 

because the size of structural deformation is larger than the size of a focused X-ray nanobeam, and 

phase information loses its significance because the spatial frequency of the Tilt-direction intensity 

line profiles significantly changes in the deformed regions. 
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Chapter 3: Domain alignment within ferroelectric/dielectric 

PbTiO3/SrTiO3 superlattice nanostructures 

 Introduction 

This chapter reports the discovery that merging two independent methods for creating 

nanostructured ferroelectrics, ultrathin ferroelectric/dielectric superlattices (SLs) and nanostruture 

format, present a new route towards the nanoscale control of ferroelectricity. Patterned SL 

nanostructures possess a possibility for a new in-plane orientation of domain structures by 

minimizing the total free energy. The shape, size, and crystallographic orientation of the 

nanostructure can drastically alter the competition among the different contributions to the total 

free energy of the system and thus have a significant impact on fiinal ferroelectric domain 

configurations. The experimetnal study reported in this chapter shows that fabricating 

nanostructures produces specific orientations of the nanodomain patterns in which the 180° stripe 

domains observed in ferroelectric/dielectric SLs are aligned parallel to the edges of the 

nanostructure. Further processes to understand and control ferroelectric polarization may lead to 

other exotic polarization configurations, and can enable a variety of applications, including data 

storage, optical devices, and reconfigurable electronics [1-3]. 

3.1.1 Polarization domains in ferroelectric thin films 

The cubic perovskite structure of compounds with the chemical formula ABO3 has a unit 

cell in which consist of A cations at the (0, 0, 0) corners, B cations (0.5, 0.5, 0.5) body center, and 

anions (O) at (0.5, 0.5, 0), (0.5, 0.5, 0), and (0.5, 0.5, 0). SrTiO3 (STO), for example, has this cubic 

structure. Small atomic displacements of the cations relative to anions result in distortion of the 

unit cell and lead to a ferroelectric polarization with a non-zero net dipole moment. PbTiO3 (PTO) 

in its tetragonal phase at a temperature below its Curie temperature has displacements of the Ti 
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and O atoms that lead to a tetragonal distortion of the unit cell and produce a large net electric 

dipole moment. The distortion of the unit cell and the electrostatic effects associated with the 

electric dipole are the key phenomena underpinning the formation and patterning of ferroelectric 

domain structures [4]. 

The creation of surfaces or interfaces can lead to discontinuities in the structure and 

polarization. The change in the magnitude of the polarization leads the creation of a large 

interfacial charge density, termed a bound charge [5]. The bound charge in turn induces an 

electrostatic potential distribution, a so-called depolarization field. The depolarization field 

increases the total free energy of the ferroelectric thin films by increasing the electrostatic energy 

[6]. The free energy can be reduced by lowering the depolarization field through the formation of 

a ferroelectric domain pattern in which the polarization alternate in direction [7]. A pattern of 180° 

ferroelectric striped domains forms in few-nm PTO thin films grown on STO substrates [4]. The 

formation of ferroelectric domains, however, leads to the formation of domain walls and the 

domain size is determined by a trade-off between the electrostatic and domain wall energies [7]. 

3.1.2 Manipulation of domains using mechanical stress and size effects 

The polarization and domain configuration within ferroelectrics can be manipulated by 

externally applied stresses using a strained buffer layer, a mechanical load, or lattice-mismatched 

substrates [8-12]. The properties can include the ferroelectric transition temperatures and preferred 

directions of domain walls. A mechanical load that bends the thin film can introduce a higher 

density of domain walls in PTO thin films [9]. Controlling strain and electrostatic boundary 

conditions by choosing various substrates can eliminate unfavorable ferroelastic variants in 

BiFeO3 (BFO) thin films resulting in domain wall alignments [10-12]. Subtle properties associated 

with the response of domains to applied fields can also be modified by applied stresses. For 
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example, the domain wall velocity increases in PbZr0.2Ti0.8O3 thin films as a function of biaxial 

strain [8].  

A variety of phenomena influenced by size effects arise in nanostructured ferroelectric 

materials. Examples of ferroelectric nanomaterials include crystalline epitaxial islands [13], 

composites incorporating nanoscale ferroelectric crystallites [14,15], ferroelectric layers with 

nanoscale thickness [16]. The ferroelectric domain configurations are influenced by the structural 

distortion when creating nanostructures, for example, in BFO nanostructures the domain 

configuration depend on the out-of-plane lattice strain and can be changed after a mechanical 

milling process elastically releases the substrate-imposed stress [17]. The nanoscale polarization 

configurations also depend on the boundary conditions imposed by the shapes of nanostructures 

[18]. In elongated BaTiO3 nanostructures, polar vector domains aligned along the length direction 

are accompanied by other polar vector domains parallel to the shorter direction [19]. 

3.1.3 Formation of ferroelectric/dielectric superlattice nanostructures 

Many of the size effects observed in nanostructured ferroelectric also occur in ferroelectric 

SL thin films in which the individual component layers have few nm thicknesses [4,20,21]. This 

chapter focuses in particular on materials consisting of alternating ultrathin layers of ferroelectric 

and dielectric oxides, termed ferroelectric/dielectric superlattices. Ferroelectric/dielectric SLs have 

domain configurations that differ significantly from those observed in ultrathin ferroelectric thin 

films with a uniform composition [22-24]. Specifically, striped nanodomains are formed with 

typical widths of several nanometers [25,26]. The specific value of the width is determined by the 

balance of domain wall and depolarization energies [23,24,26-30]. 
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3.1.4 Nanodomain configuration in PbTiO3/SrTiO3 superlattice nanostructures 

PTO/STO ferroelectric/dielectric SLs nanostructures can be defined by using lithographic 

patterning techniques. A synchrotron x-ray nanobeam diffraction study of the SL nanostructures 

that there is an anisotropy in the intensity distribution of the x-ray diffuse scattering produced by 

the domain pattern. The angular distribution of X-ray diffuse scattering intensity from 

nanodomains indicates that domains are aligned within an angular range of approximately 20° with 

respect to the edges of the nanostructure.  

A computational investigation of the energetics of the polarization patterns calculated using 

Landau–Ginzburg–Devonshire (LGD) theory indicates that domain wall orientation parallel to the 

edges of the structure yields elastic distortions that allow for the greater magnitude of the remnant 

polarization than other domain orientations. The greater magnitude polarization in the domains 

with the parallel orientation to the nanostructure edges can minimize the total energy of the system 

by lowering of bulk and electrostrictive contributions to the total free energy.  

As described below, the x-ray study also provides results that can be used to test alternative 

hypotheses for the origin of the alignment effects. The nanodiffraction experiments show that the 

fabrication process mechanically distorts the SL nanostructure to a samll extent. A range of applied 

stresses corresponding to this distortion was included in the computational model to understand 

the possible role of this strain in the domain alignment. A study of the free energies of the 

competing domain configurations as a function of the applied stress shows that the observed 

configuration was favorable under all stresses. Similarly, the domain wall alignment with the 

geometrical features of the nanostructure was robust for the experimental widths of nanostructures 

considered. 
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 Experimental setup 

3.2.1 Fabrication of PbTiO3/SrTiO3 superlattice nanostructures 

The SL thin film consisting of alternating PTO and STO layers were deposited using off-

axis radio-frequency sputtering with a repeating unit of 7 unit cells of PTO and 3 unit cells of STO. 

This composite unit was repeated 25 times to attain a 100-nm thick SL thin film deposited on a 

SrRuO3 (SRO) thin film on a (001)-oriented STO substrate. The deposition, structural 

characterization, and equilibrium domain pattern in the materials have been previously described 

[25,27,31]. As shown in Figure 3-1(a), the SL nanostructures were fabricated using focused-ion-

beam (FIB) milling lithography. In order to protect the SL from ion-induced damage, a double 

layered cap was deposited before the Ga-ion milling process. The dimensions of the area covered 

by the protective cap were approximately 3 µm × 2 µm, extending beyond the area that was 

eventually milled during the FIB process. The bottom layer of the protective cap consisted of a 

130 nm-thick Pt layer deposited by electron-beam-induced deposition. The top layer of the cap 

consisted of a 230 nm-thick layer of carbon produced by Ga-ion-induced deposition.  

The nanostructures were fabricated by milling regions to mechanically decouple them from 

the surrounding area of SL thin film. Within the milled regions, the cap, SL, and underlying 

substrate were removed to a depth of 3 µm. The milling was conducted using a Ga-ion accelerating 

potential of 30 kV and current of 50 pA in a large number of passes of the beam over each area to 

be removed. Figure 3-1(b) shows a scanning electron microscopy (SEM) image of a SL 

nanostructure with width W = 800 nm and length L = 2 µm. The analysis employs a Cartesian 

coordinate system in which the long direction of the nanostructures is parallel to the x-axis and the 

z-axis is along the substrate surface normal. A previous study of submicron thick STO sheets has 
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shown that the FIB milling process induces bending of the STO crystals, but does not introduce 

extended defects [32].  

3.2.2 X-ray nanodiffraction 

The changes in the SL lattice and domain structures were studied using synchrotron X-ray 

nanobeam diffraction at station 26-ID-C of the Advanced Photon Source of the Argonne National 

Laboratory. An X-ray beam with a photon energy of 9 keV was focused to a spot size of 50 nm 

full-width-at-half maximum using a 160 µm-diameter Fresnel zone plate. A 60 µm-diameter center 

stop and an order sorting aperture were used to attenuate the unfocused beam and X-rays focused 

to higher orders. The convergence of the focused X-ray nanobeam was 0.26° at the focal spot. The 

thickness of the SL is less than its absorption length [33], so the focused X-ray nanobeam can 

Figure 3-1: (a) Schematic of nanostructure fabrication. (b) SEM image of an 800 nm-wide 

PTO/STO SL nanostructure created using FIB lithography. The protective cap appears as a raised 

region covering the ridge-shaped nanostructure. The cap also extends slightly into the region 

beyond the unpatterned area of the SL at each edge of the nanostructure. 
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penetrate the entire SL thickness, thereby providing information about SL lattice distortion and its 

nanoscale domain structures [34]. The x-ray diffraction patterns were collected using a charge 

coupled device detector consisting of a 1024 × 1024 array of 13 µm square pixels.  

As illustrated in Figure 3-2(a), the elongated SL nanostructure was placed such that the 

focused X-ray nanobeam propagated parallel to the length direction of the nanostructure on the x–

z plane. The benefit of this X-ray geometry is that the focused X-ray nanobeam travels along the 

length direction of the nanostructure, allowing the variation of structural and ferroelectric 

properties across the width of the nanostructure to be studied. The incident angle of the X-ray 

beam was fixed near the 0th order Bragg angle of the 002 PTO/STO SL Bragg reflection, 

corresponding to the average crystallographic d-spacing of the SL. The Bragg angle for this 

reflection was θB = 20.11°, with the out-of-plane wavevector qz of 3.14 Å −1 [35]. A distribution of 

diffuse x-ray scattering intensity arises in reciprocal space due to scattering from the striped 

Figure 3-2: (a) X-ray nanodiffraction geometry including the PTO/STO SL thin film 

heterostructure, underlying SRO layer, and STO substrate. (b) Geometry of reciprocal space near 

the 002 X-ray reflection of the PTO/STO SL. When the diffraction experiment matches the Bragg 

condition for the SL, at Δθ = 0, the Ewald sphere (dark gray) intersects (i) Bragg reflection and 

(ii) the ring of domain diffuse scattering. At other values of Δθ the Ewald sphere intersects the ring 

of domain diffuse scattering at a different value of δ. 
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nanodomains. In the unpatterned region of the PTO/STO SL the diffuse scattering intensity is 

nearly uniformly distributed around a ring with a reciprocal-space radius of 0.097 Å −1 [4,21,25,30]. 

This radius corresponds to a real-space stripe nanodomain period Λ of 6.5 nm.  

Figure 3-2(b) shows the geometry of reciprocal space near the 002 Bragg reflection of the 

PTO/STO SL. The diffuse scattering intensity from the unpatterned region of the film is distributed 

as a uniform ring in the qx–qy plane, which is schematically shown as a toroid in Figure 3-2(b). 

The details are discussed in Chapter 3.4.1. At the Bragg condition, the Ewald sphere intersects (i) 

the Bragg reflection and (ii) the ring of domain diffuse scattering.  

Images of the two-dimensional diffraction patterns are shown in Figure 3-3. The horizontal 

axis of the images is the Δ2θ direction associated with the conventional 2θ scattering angle. The 

diffraction patterns contain the reciprocal information over a range Δqz = 0.039 Å −1 corresponding 

to the convergence of the focused X-ray beam. 

Figure 3-3(a) shows the diffraction pattern of the SL 002 Bragg reflection. The SL Bragg 

reflection has an angular width along the Δ2θ direction that is inversely proportional to the total 

thickness of the SL. The simulated intensity distribution at this Bragg reflection, shown in Figure 

Figure 3-3: Detector images of diffraction patterns of (a) SL Bragg reflection, (b) simulated SL 

Bragg reflection, and (c) domain diffuse scattering acquired at the Bragg condition. The 2 

diffraction angle is in the horizontal direction in the diffraction patterns in this figure. 
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3-3(b), was generated using a nanobeam simulator [36,37]. This simulation simulates the coherent 

x-ray nanodiffraction pattern acquired using a monochromatic focused x-ray beam and allows the 

simulation of multilayer heterostructures [37,38].  

The domain diffuse scattering appears in the diffraction pattern shown in Figure 3-3(c). 

The diffuse scattering intensity is distributed in a speckle pattern, an uneven distribution of 

intensity in narrow “speckles”. Speckle patterns are commonly observed in diffuse scattering of 

coherent x-rays from disordered systems. The observation of a speckle pattern in the domain 

diffuse scattering indicates that the striped nanodomain pattern is highly random. A similar 

observation has also been reported for PTO/STO superlattices probed with coherent x-ray beams 

focused to much larger sizes [39]. 

 Elastic lattice distortion in PbTiO3/SrTiO3 superlattice nanostructures 

FIB lithography often results in the introduction of defects and other sources of stress that 

distort nanostructures [40]. The FIB milling process was thus expected to distort the SL 

nanostructures. The X-ray nanobeam diffraction study reveals that the SL nanostructures are 

elastically distorted. The distortion leads to a position-dependent angular shift of the SL Bragg 

reflection on the detector plane along a direction perpendicular to the X-ray beam footprint 

direction by an angle ∆χ due to the local tilting of the lattice planes by an angle ∆α. The tilting of 

the lattice planes (∆α) can be determined by measuring the angular shift of the diffraction patterns 

on the detector using the relationship ∆α= ∆χ/2sin(θB). A similar approach was used to determine 

the tilting of lattice planes in the Si/SiGe heterostructure described in Chapter 2. The derivation of 

the details relationship between ∆α and ∆χ and other details the X-ray analysis of the tilts are 

discussed in Chapter 2. A plan-view SEM image of the 800-nm-width nanostructure and a map of 

∆α for its crystal lattice are shown in Figures 3-4(a) and Figures 3-4(b), respectively. The maps of 
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the tilt indicate that the lattice is rotated by up to 0.07° with respect to the average orientation. The 

lattice tilt resulting from the elastic distortion is shown as a surface plot in Figure 3-4(c), 

illustrating the local curvature of the SL nanostructure.  

3.3.1 Determining the strain in the nanostructure from its curvature 

The magnitude of the curvature was measured by computing the numerical derivative of 

the lattice tilt angles with respect to the measured positions [41]. The curved shape of nanostructure 

imposes a strain in the SL nanostructure, with the largest magnitude along the in-plane direction.  

Figure 3-5 shows a plot of the structural relaxation in the nanostructure. The average in-

plane structural relaxation is defined as 
1

𝑡
∫

𝐷

𝑅

𝑡

0
𝑑𝐷 =

𝑡

2𝑅
, where t is the film thickness, and D is a 

variable spanning the film thickness. In the nanostructure, however, the curvature reaches up to 

5880 m-1. This corresponds to a radius of curvature R of 0.17 mm based on the assumption that the 

relaxation arises only from the bending of the SL. The average in-plane relaxation for the curved 

SL nanostructure shown in Figure 3-5 is 0.03%. The unpatterned regions away from the SL 

nanostructure in Figure 3-5 show no systematic variation structural relaxation. 

Figure 3-4: (a) SEM image of an 800 nm-wide SL nanostructure, and (b) its crystal lattice tilt with 

(c) Schematic of a curved lattice resulting from the lattice tilt with its estimated magnitude of 

curvature calculated using the derivation of the lattice tilt angles. The red arrows indicate the 

surface normal directions. 
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3.3.2 Out-of-plane strain measurement using x-ray nanodiffraction 

A second estimate of the changes in lattice of the PTO/STO nanostructure can be obtained 

by analyzing the difference between the diffraction patterns of the SL nanostructure and 

unpatterned regions. Here we consider only the shift of the diffraction pattern along the Δ2θ 

direction, perpendicular to ∆χ direction. Analyzing the shift of Bragg reflection along the Δ2θ 

direction provides an estimate of the out-of-plane strain. An area near a 500 nm-wide SL 

nanostructure was scanned using the focused X-ray nanobeam. The 002 SL Bragg reflections 

appears on the detector whenever the (002) planes of the SL meet the Bragg condition. This 

condition is relatively easy to achieve because of the large angular range spanned by the 

convergence of the focused X-ray nanobeam.  

Figure 3-6 shows a set of diffraction patterns acquired at different positions along the 

length of the 500-nm-wide nanostructure, following the path indicated by the green line. All the 

diffraction patterns were acquired at a nominal X-ray incident angle 0.03° less than the Bragg 

angle of the unpatterned regions. The diffraction patterns numbered 1, 2, 3, 4, 9, 10, 11, and 12 in 

Figure 3-6 were acquired outside of the nanostructure and diffraction patterns 5, 6, 7, and 8 were 

acquired within the nanostructure. Note that the 2θ direction is vertical in the diffraction patterns 

in Figure 3-6. The 2θ angles of the PTO/STO 002 Bragg reflection in each diffraction pattern 

image were measured using the centroid calculation of the intensity distribution along the Δ2θ 

Figure 3-5: In-plane structural relaxation computed under the assumption that the strain arises 

only from bending of the nanoscale sheet. 
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direction. The Bragg reflections within the nanostructure appear at a value of 2θ that is 0.017° 

larger than in the diffraction patterns acquired outside of the nanostructure. This angular difference 

(∆) arises because the out-of-plane lattice parameter within the nanostructure is smaller than for 

the unpatterned region. The angular difference can be used to calculate the out-of-plane strain 

using the relationship εz = -cot(θB) ∆, which leads to εz = -0.08 %. 

 The in-plane relaxation can be found from the value of εz measured in Figure 3-6. The 

relationship between the in-plane strain εx and the out-of-plane strain εz is εx = εz (ν − 1)/ν [42,43]. 

Here v is the Poisson ratio. The value of ν = 0.3125 for the PTO [44,45] is used here, assuming the 

mechanical properties of the PTO/STO SL are similar to those of PTO. The strain in-plane x-

direction is thus εx = 0.18%.   

The strain observed in the PTO/STO SLs has a similar magnitude to the strain observed in 

STO sheets formed using FIB [32]. The strain observed here is slightly less than what has been 

recently reported in Si or Au nanocrystals exposed to FIB, because the top of the SL is protected 

Figure 3-6: Diffraction patterns acquired along the length of a 500-nm-width nanostructure. The 

X-ray beam was scanned along the path indicated by the green dotted line. The diffraction patterns 

are shifted on the detector plane, and the angular difference (∆) arises because the out-of-plane 

lattice parameter within the nanostructure. The 2 diffraction angle is in the vertical direction in 

the diffraction patterns in this figure.  
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with a capping layer and is not directly milled [40,46,47]. The observed in-plane relaxation 

provides an important parameter for demonstrating the validity of the computational results 

described below. 

 Models of nanodomain alignment 

3.4.1 Measuring the azimuthal domain distribution 

It is useful to define two different limiting cases of the domain configuration in order to 

simplify the discussion of the nanodomain directions within the nanostructures. Two distinct stripe 

nanodomain configurations with different domain-wall orientations, termed “perpendicular” and 

“parallel” are shown in Figure 3-7. The orientations of the domain walls are aligned either 

perpendicular or parallel relative to the edges of the nanostructures. As illustrated in the diagram 

of reciprocal space shown in Figure 3-2(b), the azimuthal angle δ is defined with respect to the y-

axis to describe the orientation of domains relative to the SL nanostructure length direction. The 

same definition the angle δ is illustrated in real space Figure 3-7(c) with respect to the stripe 

nanodomain orientation. The perpendicular and parallel configurations have δ = 90° and δ = 0°, 

respectively. In order to describe the orientation of stripe nanodomain with respect to the SL 

nanostructure, a position-dependent unit vector n is defined as the local normal vector to the planes 

of the domain walls at all positions. The in-plane orientation of n at each position is described by 

a corresponding δ angle, as illustrated in Figure 3-7(c).  

The domain diffuse scattering intensity forms in a ring in reciprocal space, in a qx-qy plane 

with a radius of 2π/Λ, where Λ is the real-space domain period. In cases of a non-uniform 

distribution of the orientations of the domain walls, there is also a non-uniform distribution of the 

domain diffuse scattering intensity around the ring. Figure 3-8 shows sections of reciprocal space 

in the qx-qy and qx-qz planes passing through the 002 SL Bragg reflection and the ring of domain 
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diffuse scattering intensity (yellow). The 002 SL Bragg reflection is at qx = qy = 0, and qz = z0, but 

is not shown. Figure 3-8(a) and Figure 3-8(c) show Ewald sphere intersecting the ring of domain 

diffuse scattering intensity in which the incident X-ray beam meets the 002 SL Bragg condition. 

In this case, the slice of domain diffuse scattering intensity appears on the detector plane. Other 

sections of the ring of domain diffuse scattering intensity can also be obtained by rotating the 

sample by and angle ∆θ. This rotation of the sample corresponds to changing the x-ray incident 

angle and rotating reciprocal space with respect to the Ewald sphere. Figure 3-8(b) shows the 

corresponding new section of domain diffuse scattering intensity resulting from the displacement 

of the Ewald sphere along the qx axis ∆x. In terms of the incident angles the magnitude of ∆x is: 

∆𝑥 = 𝑟 (𝑐𝑜𝑠𝜃1 −  𝑐𝑜𝑠𝜃2) 

Equation 3-1 

The angles θ1 = θ1 + Δθ, and θ2 are defined in Figure 3-8(d). The azimuthal angle δ angle at which 

the Ewald sphere intercepts the domain diffuse scattering can be determined using the relationship: 

Figure 3-7: Diagrams of the polarization within SL nanostructures in (a) perpendicular (δ = 90°) 

and (b) parallel (δ = 0°) domain configurations. (c) Definitions of the parameters used to describe 

the domain wall orientation: the local domain-wall in-plane normal (n) and azimuthal angle (δ) 

with respect to the y-axis.  
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𝜃2 = 𝑠𝑖𝑛−1
𝑧2

𝑟
= 𝑠𝑖𝑛−1

𝑧0 − 𝑧1

𝑟
= 𝑠𝑖𝑛−1(2𝑠𝑖𝑛𝜃𝐵 − sin𝜃1) 

Equation 3-2 

Which gives: 

δ = 𝑠𝑖𝑛−1
∆x

2𝜋/𝜆
=

𝛬

𝜆
(cos(𝑠𝑖𝑛−1(2𝑠𝑖𝑛𝜃𝐵 − sin𝜃1) − 𝑐𝑜𝑠𝜃1)) 

Equation 3-3 

By using the trigonometric identity cos(𝑠𝑖𝑛−1(𝛼)) = √1 − 𝛼2 the expression for δ angle can be 

simplified to: 

δ(∆θ) =
𝛬

𝜆
(√1 − (2𝑠𝑖𝑛𝜃𝐵 − sin(𝜃𝐵 + ∆θ))2 − cos (𝜃𝐵 + ∆θ)) 

Equation 3-4 

Here λ is the wavelength of the x-rays. 

The maximum value of Δθ at which the Ewald sphere can geometrically intersect the ring 

of domain diffuse scattering is 1.77°. For magnitudes of Δθ less than approximately 1°, a target in 

this study, δ(Δθ) ≈
2𝛬 𝜟𝜽 𝑠𝑖𝑛𝜽𝐵

𝜆
, or approximately δ(Δθ) = 32.4 Δθ. 
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3.4.2 Domain intensity enhancement in nanostructure at small δ 

The domain diffuse scattering intensity measured at each value of δ arises from the 

population of striped nanodomains with matching directions of the in-plane real-space domain 

orientation. Figure 3-9(a) shows a plan view of an example of the striped nanodomain patterns in 

real space. The striped nanodomain patterns comprise the lateral repetitions of up and down 

polarizations.  

Figure 3-8: Reciprocal space maps with Ewald sphere (purple) and the domain intensity (yellow). 

The superlattice Bragg peak is not shown. The corresponding x-ray incident angles are (a, c) θB 

and (b, d) θB + Δθ 
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The orientation of the domain patterns is disordered in the regions far from the SL 

nanostructures. In this region, the Fourier transform of the real space domain patterns would 

generate a ring shape with a uniform intensity distribution in reciprocal space, as shown in Figure 

3-9(b). A model of the aligned domain pattern in real space and the corresponding Fourier 

transform intensity are shown in Figure 3-9(c) and Figure 3-9(d). In the model of the aligned 

domains the domain period is set to be the same as in Figure 3-9(a), but the domain walls are 

approximately aligned with the normal vector n along the y axis. Accordingly, the domain diffuse 

scattering intensity in reciprocal space is more intense at two locations along the qy direction. With 

Figure 3-9: Plan view of models for ferroelectric stripe domain patterns in real space with up 

(white) and down (black) polarizations with (a) disordered and (c) aligned domain patterns. The 

domain period is defined as the distance covering both up and down polarizations. (b, d) Fourier 

transform intensity of (a) and (c) in reciprocal space arising from the lateral repetition of the 

domain period. 
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the aligned domain pattern, there are thus several locations in reciprocal space where the domain 

diffuse scattering intensity is higher than in the disordered case. This effect is apparent in the 

Fourier transforms of the disordered and ordered cases shown in Figure 3-9(b) and Figure 3-9(d). 

The anisotropy of scattered intensity around the ring of domain diffuse scattering has been 

previously observed in ordered magnetic striped domain systems [48].The domain diffuse 

scattering intensity at small values of δ angle will  reduced perpendicular to the mechanically 

milled edges of the SL nanostructure, and increased when the domain walls are parallel to the 

edges.  

The experimental study of the domain diffuse scattering shows that fabrication of the 

nanostructure induces anisotropy in the distribution of domain diffuse scattering. An experiment 

was conducted in which the domain diffuse scattering intensity was collected at several values of 

the incident angle to measure the changes in domain intensity at multiple values of the angle δ. 

The domain diffuse scattering intensity from the nanostructure was first collected at δ(Δθ = 0.03°) 

= 1°. A map of the domain diffuse scattering intensity as a function of position within and near the 

SL nanostructure is shown in Figure 3-10. The domain intensity is a factor of 7 more in intensity 

Figure 3-10: Map of domain diffuse scattering intensity acquired at Δθ = 0.03°, corresponding to 

δ = 1° in the area shown in (c). The intensity within the nanostructure is higher than that in the 

unpatterned region by a factor of 7. 



65 

 

in the nanostructure than in the unpatterned region. The local enhancement of the diffuse scattering 

indicates that domain walls in the SL nanostructure are aligned with the edges of the structure.  

Figure 3-10 also shows regions with relatively low domain diffuse scattering intensity near 

the edges of the nanostructure. These regions of low intensity arise from artifacts in the X-ray 

imaging due to a combination of a slight defocus (and thus larger spots size) of the X-ray beam 

and an azimuthal misalignment of the focused X-ray nanobeam footprint with the long axis of the 

nanostructure. 

 Further information about the azimuthal distribution of domain diffuse scattering intensity 

was obtained by comparing the domain diffuse scattering intensities measured at Δθ = 0.03° with 

a second set of intensities measured at Δθ = 0.25°. The two incident angles correspond to δ = 1° 

and 8°. The azimuthal dependence of the domain diffuse scattering intensities for SL 

nanostructures with widths of 500 nm and 800 nm are plotted in Figure 3-11, along with the 

intensities acquired at the same angles in unpatterned regions. The intensities are plotted on a scale 

Figure 3-11: Normalized domain diffuse scattering intensities as a function of azimuthal angle δ. 

Domain scattering intensities were measured in unpatterned regions and in 500 nm- and 800 nm-

wide SL nanostructures at domain normal angles δ = 1° and 8°. 
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normalized by the average intensity of the measurements at the two orientations in the unpatterned 

region. On this scale, the normalized intensity of the unpatterned regions is close to 1. The domain 

diffuse scattering intensities in SL nanostructures are high at a low δ angle, as expected based on 

the map shown in Figure 3-10, and are lower at the larger δ angle.  

The conclusion drawn from Figure 3-10 is that the domain walls are preferentially aligned 

along the mechanical edges of the nanostructures. Assuming that the distribution of domain wall 

directions is symmetric about δ = 0, a fit of a normal distribution of domain wall orientations gives 

a full-width at half-maximum of 20°. This angular width indicates that the domain walls are 

parallel to the long edge of the nanostructure with deviations in their orientations of approximately 

±10°.  

The presence of the capping layer makes domain wall imaging by piezoelectric force 

microscopy (PFM) impossible because the electrical contact between a probe tip and the 

ferroelectric is interrupted. Similarly, the formation of the thin sections of the SL that required for 

transmission electron microscopy could potentially perturb the original conditions leading to 

domain alignment. Thus, neither of these two techniques were employed for probing the obtained 

domain wall configurations. 

 Other possible artifacts for domain intensity enhancement in nanostructures 

This section considers three artifacts that could lead to the enhanced domain diffuse 

scattering intensity observed in the SL nanostructures without domain alignment. First, an increase 

in the total number of domain walls within the region illuminated by the X-ray beam, 

corresponding to a decrease in domain period, could lead to increased domain diffuse scattering. 

A comparison of the domain diffuse scattering from patterned and unpatterned regions shows that 
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the domain period in SL nanostructures is 3% smaller than the unpatterned region. This would 

produce a 6% increase in intensity within the nanostructures because the X-ray diffuse intensity is 

proportional to the square of the total number of domain walls [23,29]. The expected intensity 

change due to the domain period is thus much smaller than the measured intensity difference 

between patterned and unpatterned areas.  

A second possible artifact is related to the possibility that SL nanostructures have reduced 

domain wall width and thus higher X-ray scattering in comparison with the unpatterned region. 

This possibility can be evaluated using the domain diffuse scattering intensities derived as a 

function of domain-wall width [49]. Assuming the domain wall width is zero in the SL 

nanostructure, the observed intensity enhancement occurs only when the domain wall width 

reaches 16 nm in the unpatterned region, which is an impractically large value that is larger than 

the domain period [50,51]. 

One last artifact would arise if the areas occupied by up and down polarizations within the 

nanodomain period were different in the SL nanostructure than in the unpatterned region. The 

intensity of the diffuse scattering depends on the up-down domain fraction and reaches a maximum 

with equal populations of up and down polarizations [23,29]. An up-polarization fraction pup = 0.5 

in the SL nanostructure and pup = 0.1 in the unpatterned region would lead to the observed intensity 

enhancement. The change in up-down polarization fraction, however, is unreasonable because pup 

= 0.5 is expected in the unpatterned region, as observed in previous studies of PTO/STO SLs 

grown on STO substrates [26]. Therefore, none of these artifacts accounts for the observed 

intensity enhancement. 
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 Thermodynamic models of domain alignment 

A computational study using a phase-field method was conducted by Dr. John Mangeri and 

Prof. Serge Nakhmanson of the University of Connecticut to evaluate the total free energies of 

different domain wall arrangements in the SL nanostructures. A range of computational methods, 

including density functional theory and phase field modeling, can be used to predict the 

polarization configuration of nanoscale ferroelectrics [18,26,52,53].  Dr. Mangeri and Prof. 

Nakhmanson have developed methods allowing precise simulations of ferroelectric nanostructures 

employing phase field modeling [54,55]. This section describes the output of the discussion 

between myself and Dr. Mangeri and Prof. Nakhmanson regarding the physical assumptions 

underpinning the thermodynamic model and summarizes a series of studies that reveal how the 

edges of the nanostructure favor the parallel domain configuration. 

3.6.1 Landau-Ginzburg-Devonshire free energy calculation 

Previous studies have shown that the STO layers are strongly polarized [20,56] when the 

PTO component dominates the SL repeating unit [31,57]. In this case, there is a with a nearly 

constant polarization with a magnitude less than the equilibrium PTO polarization [31,57]. Once 

the STO layers are polarized, the polarization is approximately continuous through the entire 

PTO/STO repeating unit. In order to simplify the simulations, the model configuration adopted a 

uniform ferroelectric material of PTO to represent the SL. 

The total free energy of the PTO Ftotal is the sum of the bulk, electrostatic, domain wall 

formation, elastic, and coupled energy contributions: 

𝐹𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑓 𝑑𝒙𝑑𝒚𝑑𝒛 = ∫[𝒇𝒃𝒖𝒍𝒌 + 𝒇𝒅𝒐𝒎𝒂𝒊𝒏_𝒘𝒂𝒍𝒍 + 𝒇𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒔𝒕𝒂𝒕𝒊𝒄 + 𝒇𝒆𝒍𝒂𝒔𝒕𝒊𝒄 + 𝒇𝒄𝒐𝒖𝒑𝒍𝒆𝒅] 𝑑𝒙𝑑𝒚𝑑𝒛 

Equation 3-5 
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The bulk energy contribution of the Landau free energy density was calculated using a sixth order 

expansion in the components of the polarization P:  

𝒇𝒃𝒖𝒍𝒌 = 𝛼1(𝑇)(𝑷𝑥
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Equation 3-6 

Here α1, α11, α12, α111, α112, and α123 are the expansion coefficients, which at room temperature are, 

-7.1 × 107, -7.3 × 107, 7.5 × 108, 2.6 × 108, 6.1 × 108, -3.7 × 108, and -7.1×107 for PTO. The minima 

of the bulk energy determine the preferred directions and magnitude of the polarization in the unit 

cell at a given temperature, T. The polarization is non-zero when T is below the Curie temperature, 

Tc, the phase transition temperature between ferroelectric and paraelectric states. 

The domain wall formation energy contribution arises from the local gradient in 

polarization across the domain wall, defined as: 
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𝜕𝑷𝑥

𝜕𝒚
−

𝜕𝑷𝑦

𝜕𝒙
)

2

+ (
𝜕𝑷𝑦

𝜕𝒛
−

𝜕𝑷𝑧

𝜕𝒚
)

2

+ (
𝜕𝑷𝑧

𝜕𝒙
−

𝜕𝑷𝑥

𝜕𝒛
)

2

] 

Equation 3-7 
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Here G11, G12, G44, and G’44 are the gradient energy coefficients, and have values of 0.6 G110, 0, 

0.3 G110, and 0.3 G110, respectively, with G110 = 1.73 × 10-10 C-2m4N.  

The electrostatic energy contribution represents the interaction of the ferroelectric 

polarization with the internal and external electric fields and is defined as 

𝒇𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒔𝒕𝒂𝒕𝒊𝒄 = −𝑷 ∙ ∇𝜱 

Equation 3-8 

Here P is the polarization field and Φ is the electrostatic potential.  

The elastic energy contribution to the total energy is: 

𝒇𝒆𝒍𝒂𝒔𝒕𝒊𝒄 =
1

2
𝐶𝑖𝑗𝑘𝑙(𝜀𝑖𝑗 − 𝜀𝑖𝑗

0 )(𝜀𝑘𝑙 − 𝜀𝑖𝑗
0 ) 

Equation 3-9 

Cijkl is the elastic stiffness tensor with i, j, k, and l being either 1, 2, or 3, and C11 = 281 Gpa, C12 = 

116 Gpa, and C44 = 97 Gpa for PTO. 𝜀𝑖𝑗
0  is the strain arising from the polarization [52]: 

𝜀11
0 = 𝑄11𝑃𝑥

2 + 𝑄12(𝑃𝑦
2 + 𝑃𝑧

2), 𝜀23
0 = 𝑄44𝑃𝑦𝑃𝑧 

𝜀22
0 = 𝑄11𝑃𝑦

2 + 𝑄12(𝑃𝑧
2 + 𝑃𝑥

2), 𝜀13
0 = 𝑄44𝑃𝑧𝑃𝑥 

𝜀33
0 = 𝑄11𝑃𝑧

2 + 𝑄12(𝑃𝑥
2 + 𝑃𝑦

2), 𝜀12
0 = 𝑄44𝑃𝑥𝑃𝑦 

Equation 3-10 

Q11, Q12, and Q44 are the electrostrictive tensors and are 0.089, -0.026, and 0.034, respectively. 

The elastic strain tensor is defined as εij = 
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) where u is the displacement vector fields.  
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The coupled energy contribution accounting for the coupled strain to the polarization is: 

𝒇𝒄𝒐𝒖𝒑𝒍𝒆𝒅 =
1

2
𝑞𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑷𝑘𝑷𝑙 

Equation 3-11 

Here qijkl = 2QijmnCmnkl. The elastic and coupled energy contributions are separated because the 

variation of the differentiation with respect to the polarization in the time-dependent Landau-

Ginzburg-Devonshire (TDLGD) equations provides a nonzero solution for each contribution.  

3.6.2 Relaxational approach 

The temporal evolution of P within the system at each location was described by TDLGD 

equation [54,55]: 

−𝛾
𝜕𝑷

𝜕𝑡
=

𝛿

𝛿𝑷
∫ 𝑓(𝑷)𝑑3

𝑉

𝑟 

Equation 3-12 

Here, f(P) is the local LGD free energy density introduced above, and γ is a time constant related 

to the mobility of domain walls [58], which is arbitrarily set to unity, and therefore the final steady-

state system configurations evolves over an arbitrary time scale. This assumption is based on the 

fact that the elastic strain relaxes much faster than polarization in ferroelectric materials [59]. The 

temperature was then immediately set below Tc for the TDLGD to be evolved until a local energy 

minimum was found, and the initial condition was chosen as discussed below. The simulation exit 

criterion is when the difference in the magnitude of the total energy is below 0.1% during two 

consecutive time steps. The evolution of the polarization is also coupled with that of the local 

internal electrostatic potential by the Poisson equation: 
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∇ ∙ (∇𝚽) = −𝜌𝑏 

Equation 3-13 

where ρb is the bound volume charge, which is equal to ∇ ∙ 𝑃. The bound charges originate from 

the polarization discontinuities at the interfaces corresponding to the depolarization field. 

For the computational model, three different sizes of SL nanostructure of 40 × 40 × 25, 60 

× 60 × 25, and 80 × 80 × 25 nm3 were considered with periodic boundary conditions along the x-

direction. The system is therefore infinitely long along the periodic direction, which is the length 

direction of the nanostructure in the experiment. The y- and z-directions are the non-periodic 

direction, and the system remains finite but considerabley smaller than the experimentally 

fabricated nanostructures. The nanostructure was surrounded by vacuum regions along the non-

periodic directions. 

Two domain configurations were considered in which the polarization within the PTO film 

was initially biased to form the stripe nanodomains. The domain walls are aligned either 

perpendicular or parallel to the milled edges of the nanostructures. An initial polarization domain 

period matches the experimental values also as a part of the initial conditions. The initial simulated 

magnitude of the polarization is 0.6 C m−2 in each up and down domains. No conversion of 

perpendicular configuration into parallel configuration or vice versa was observed but their domain 

configurations retained the original orientations and evolved into distinct local energy minima.  

The simulations revealed that, in the nanostructures with both domain configurations, the 

lattices are elastically relaxed along the non-periodic directions. The relaxations along the y-

direction (Uy) in perpendicular and parallel configurations are shown in Figure 3-12(a). This 

relaxation map indicates that both perpendicular and parallel configurations relax toward the edges 
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of the structure. These expansions are slightly different for the two configurations: the relaxation 

for the perpendicular configuration is 0.20 nm while the relxation for the parallel configuration is 

0.18 nm at the edges. Particularly, the parallel configuration develops a corrugated surface, with 

the same periodicity as the domain pattern. The surface corrugation is expected to result from the 

in-plane compression of the nanostructure at domain walls in which the in-plane polar vectors at 

the surface are under compressive strain [26]. 

The simulation reveals that bulk and coupled free energy contributions among the free 

energy contributions are significantly different in perpendicular and parallel domain 

configurations as shown in Figure 3-12(b). In the parallel configuration, both energy contributions 

are lower than the perpendicular configuration due to the greater magnitude of the z-component of 

polarization, Pz. The larger Pz results from the corrugated-surface-induced compression at the near-

surface domain walls. A similar near-surface relaxation at the domain boundaries has been 

observed in simulations of ultrathin PTO layers [60]. Although these lower energy contributions 

counterbalance the higher elastic energy of the parallel configuration, the total energy of the 

parallel configuration is still lower than that of the perpendicular configuration due to the lower 

bulk and coupled energy contributions. Differences in other energy contributions have a smaller 

influence on the total free energy compared to the difference in bulk and coupled contributions. 

For both perpendicular and parallel configurations, the electrostatic energy contribution is 

negligibly small in comparison with other energy contributions.  

The results of these models of smaller nanostructures can be extrapolated to predict the 

behavior of nanostructures with the experimental widths of 500 and 800 nm. Figure 3-12(c) shows 

the dependence of the total energy of the perpendicular and parallel configurations on the width of 

the nanostructures. As discussed above, the total energy of the parallel configuration is always 
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lower than that of the perpendicular configuration for all three sizes. The extrapolation of the data 

in Figure 3-12 (c) indicates that the convergence in free energy of both systems will occur when 

the lateral sizes are much larger than the experimental samples of 500 nm and 800 nm. Therefore, 

the parallel configuration is energetically more favorable than perpendicular configuration in the 

Figure 3-12: Maps of (a) the relaxation along y-direction (Uy) (b) z-component of the polarization 

(Pz) in the (i) perpendicular and (ii) parallel configurations in an 80 nm-wide SL nanostructure. (c) 

Nanostructure-width-dependent volume-normalized total free energy. Extrapolation to larger 

widths indicates that the parallel configuration remains energetically favorable at the experimental 

nanostructure widths. (d) Free energy as a function of external stress applied along the y-direction 

σyy, indicating that the parallel configuration is favorable under experimentally applied stresses 

that arise from the lithography processes. 
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SL nanostructures, and the observed differences between the energy contributions in both 

configurations are experimentally meaningful at these sizes.  

It is also important to consider the possibility of the structural distortions arising from the 

fabrication of the SL nanostructures. For example, the SL nanostructures can be externally stressed 

during the FIB lithography process. To examine whether external stresses could influence the 

energetics of the domain wall formation, the simulation was repeated under a range of applied 

external stresses (σyy) up to ±0.5 GPa along the y-direction. The stress dependence of the computed 

free energy is shown in Figure 3-12(d). The average in-plane relaxations range from 0.28% to 

0.65% or from 0.19% to 0.55%, for perpendicular and parallel configurations, respectively. The 

simulations show that the parallel configuration remains energetically preferable throughout the 

entire range of probed external stresses. The range of relaxations considered in the simulations 

spans (and far exceeds) the experimentally observed average in-plane strain of less than 0.1%. 

Therefore, the elastic artifacts associated with the lithographic processes do not substantially alter 

the domain-wall configuration. 

 Conclusion 

Striped nanodomains with very small period form in the ferroelectric/dielectric PTO/STO 

SL contains striped nanodomains. Creating SL nanostructures provides a new direction to control 

the polarization domain pattern. X-ray nanobeam diffraction shows that the domain pattern is 

aligned with the edges of the structure.  LGD calculations predict that the alignment in the SL 

nanostructure in which the domain wall configuration parallel to the mechanical nanostructure 

edges is energetically favorable than the perpendicular configuration.  In particularly, the 

formation of the nanostructure relaxes the mechanical constraint present in the two-dimensional 

film. The free energy of parallel configuration is lower because the magnitude of z-component 



76 

 

polarization is larger, in turn, emerges because of the in-plane structural distortion present in the 

nanostructure. In addition, the free energy is not influenced by any external stresses that might 

arise from the lithography process.  

A recent similar study of the edges of much larger patterns in a nearly identical PTO/STO 

ferroelectric/dielectric SL also indicates that domain walls are aligned along mechanical edges 

[61]. We thus suspect that the alignment due to mechanical phenomena will be observed in a large 

range of patterned structures.  Manipulating the orientation and position of these complex 

polarization states via creating the SL nanostructures provides a new channel for applying the 

functional properties of nanoscale ferroelectrics. 

 References 

[1] J. R. Whyte and J. M. Gregg, Nat. Commun. 6, 7361 (2015). 

[2] C. Baeumer, D. Saldana-Greco, J. M. P. Martirez, A. M. Rappe, M. Shim, and L. W. 

Martin, Nat. Commun. 6, 6136 (2015). 

[3] P. Sharma, Q. Zhang, D. Sando, C. H. Lei, Y. Y. Liu, J. Y. Li, V. Nagarajan, and J. 

Seidel, Sci. Adv. 3, e1700512 (2017). 

[4] S. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm, M. V. R. Murty, 

O. Auciello, G. R. Bai, and G. B. Stephenson, Phys. Rev. Lett. 89, 067601 (2002). 

[5] S. Hong, Nanoscale phenomena in ferroelectric thin films (SPRINGER-

SCIENCE+BUSINESS MEDIA, LLC, New York, 2004). p. 16 

[6] D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, J. G. Yoon, T. K. Song, and T. W. 

Noh, Phys. Rev. Lett. 95, 237602 (2005). 

[7] G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 119 (2012). 

[8] E. J. Guo, R. Roth, A. Herklotz, D. Hesse, and K. Dorr, Adv. Mater. 27, 1615 (2015). 



77 

 

[9] W. J. Chen, Y. Zheng, W. M. Xiong, X. Feng, B. Wang, and Y. Wang, Sci. Rep. 4, 5339 

(2014). 

[10] Z. Chen, J. Liu, Y. Qi, D. Chen, S.-L. Hsu, A. R. Damodaran, X. He, A. T. N’Diaye, A. 

Rockett, and L. W. Martin, Nano Lett. 15, 6506 (2015). 

[11] C. M. Folkman, S. H. Baek, H. W. Jang, C. B. Eom, C. T. Nelson, X. Q. Pan, Y. L. Li, L. 

Q. Chen, A. Kumar, V. Gopalan, and S. K. Streiffer, Appl. Phys. Lett. 94, 251911 (2009). 

[12] Y. H. Chu, Q. He, C. H. Yang, P. Yu, L. W. Martin, P. Shafer, and R. Ramesh, Nano 

Lett. 9, 1726 (2009). 

[13] A. Gruverman and A. Kholkin, Rep. Prog. Phys. 69, 2443 (2006). 

[14] C. G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 97, 047201 (2006). 

[15] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-

Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. 

Roytburd, R. Ramesh, Science 303, 661 (2004). 

[16] M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005). 

[17] J. A. Klug, M. V. Holt, R. N. Premnath, A. Joshi-Imre, S. Hong, R. S. Katiyar, M. J. 

Bedzyk, and O. Auciello, Appl. Phys. Lett. 99, 052902 (2011). 

[18] S. Hong, J. A. Klug, M. Park, A. Imre, M. J. Bedzyk, K. No, A. Petford-Long, and O. 

Auciello, J. Appl. Phys. 105, 061619 (2009). 

[19] A. Schilling, R. M. Bowman, G. Catalan, J. F. Scott, and J. M. Gregg, Nano Lett. 7, 3787 

(2007). 

[20] S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, Appl. Phys. Lett. 87, 102906 (2005). 

[21] D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, 

and C. Thompson, Science 304, 1650 (2004). 



78 

 

[22] G. B. Stephenson and K. R. Elder, J. Appl. Phys. 100, 051601 (2006). 

[23] P. Zubko, N. Stucki, C. Lichtensteiger, and J. M. Triscone, Phys. Rev. Lett. 104, 187601 

(2010). 

[24] P. Zubko, N. Jecklin, N. Stucki, C. Lichtensteiger, G. Rispens, and J. M. Triscone, 

Ferroelectrics 433, 127 (2012). 

[25] J. Y. Jo, P. Chen, R. J. Sichel, S. J. Callori, J. Sinsheimer, E. M. Dufresne, M. Dawber, 

and P. G. Evans, Phys. Rev. Lett. 107, 055501 (2011). 

[26] P. Aguado-Puente and J. Junquera, Phys. Rev. B 85, 184105 (2012). 

[27] M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. 

Rabe, and J. M. Triscone, Phys. Rev. Lett. 95, 177601 (2005). 

[28] H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, and D. H. Lowndes, Nature 

433, 395 (2005). 

[29] R. Takahashi, O. Dahl, E. Eberg, J. K. Grepstad, and T. Tybell, J. Appl. Phys. 104, 

064109 (2008). 

[30] C. Thompson, D. D. Fong, R. V. Wang, F. Jiang, S. K. Streiffer, K. Latifi, J. A. Eastman, 

P. H. Fuoss, and G. B. Stephenson, Appl. Phys. Lett. 93, 182901 (2008). 

[31] M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez, and J. M. Triscone, 

Adv. Mater. 19, 4153 (2007). 

[32] J. A. Tilka, J. Park, K. C. Sampson, Z. Cai, and P. G. Evans, APL Mater. 4, 126108, 

126108 (2016). 

[33] Y. Ahn, J. Park, A. Pateras, M. B. Rich, Q. Zhang, P. Chen, M. H. Yusuf, H. Wen, M. 

Dawber, and P. G. Evans, Phys. Rev. Lett. 119, 057601 (2017). 



79 

 

[34] J. Y. Jo, P. Chen, R. J. Sichel, S.-H. Baek, R. T. Smith, N. Balke, S. V. Kalinin, M. V. 

Holt, J. Maser, K. Evans-Lutterodt, C.-B. Eom, and P. G. Evans, Nano Lett. 11, 3080 (2011). 

[35] R. M. Fleming, D. B. McWhan, A. C. Gossard, and W. Wiegmann, Bull. Am. Phys. Soc 

51, 357 (1980). 

[36] X-Ray Nanobeam Diffraction Simulator 

http://xray.engr.wisc.edu/nanobeamsimulation/html/index.php. 

[37] J. A. Tilka, J. Park, Y. Ahn, A. Pateras, K. C. Sampson, D. E. Savage, J. R. Prance, C. B. 

Simmons, S. N. Coppersmith, M. A. Eriksson, M. G. Lagally, M. V. Holt, and P. G. Evans, J. 

Appl. Phys. 120, 015304 (2016). 

[38] A. Ying, B. Osting, I. C. Noyan, C. E. Murray, M. Holt, and J. Maser, J. Appl. 

Crystallogr. 43, 587 (2010). 

[39] Q. Zhang, E. M. Dufresne, P. Chen, J. Park, M. P. Cosgriff, M. Yusuf, Y. Dong, D. D. 

Fong, H. Zhou, Z. Cai, R. J. Harder, S. J. Callori, M. Dawber, P. G. Evans, and A. R. Sandy, 

Phys. Rev. Lett. 118, 097601 (2017). 

[40] F. Hofmann, E. Tarleton, R. J. Harder, N. W. Phillips, P.-W. Ma, J. N. Clark, I. K. 

Robinson, B. Abbey, W. Liu and C. E. Beck, Sci. Rep. 7, 45993 (2017). 

[41] J. Park, Y. Ahn, J. A. Tilka, K. C. Sampson, D. E. Savage, J. R. Prance, C. B. Simmons, 

M. G. Lagally, S. N. Coppersmith, M. A. Eriksson, M. V. Holt, and P. G. Evans, APL Mater. 4, 

066102 (2016). 

[42] P. Cendula, S. Kiravittaya, Y. F. Mei, C. Deneke, and O. G. Schmidt, Phys. Rev. B 79, 

085429 (2009). 

[43] B. Krause, C. Mocuta, T. H. Metzger, C. Deneke, and O. G. Schmidt, Phys. Rev. Lett. 96, 

165502 (2006). 



80 

 

[44] N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 

(1998). 

[45] G. Rispens and B. Noheda, Integr. Ferroelectr. 92, 30 (2007). 

[46] E. Salvati, T. Sui, A. J. G. Lunt, and A. M. Korsunsky, Mater. Des. 92, 649 (2016). 

[47] A. M. Korsunsky, J. Guenole, E. Salvati, T. Sui, M. Mousavi, A. Prakash, and E. Bitzek, 

Mater. Lett. 185, 47 (2016). 

[48] N. Bergeard, S. Schaffert, V. L.-Flores, N. Jaouen, J. Geilhufe, C. M. Günther, M. 

Schneider, C. Graves, T. Wang, Be. Wu, A. Scherz, C. Baumier, R. Delaunay, F. Fortuna, M. 

Tortarolo, B. Tudu, O. Krupin, M. P. Minitti, J. Robinson, W. F. Schlotter, J. J. Turner, J. 

Lüning, S. Eisebitt, and C. Boeglin, Phys. Rev. B 91, 054416 (2015). 

[49] A. Boulle, I. C. Infante, and N. Lemee, J. Appl. Crystallogr. 49, 845 (2016). 

[50] S. Choudhury, Y. Li, N. Odagawa, A. Vasudevarao, L. Tian, P. Capek, V. Dierolf, A. N. 

Morozovska, E. A. Eliseev, S. Kalinin, Y. Cho, L.-Q. Chen, and V. Gopalan, J. Appl. Phys. 104, 

084107 (2008). 

[51] X. W. Deng and X. F. Chen, Opt. Express 18, 15597 (2010). 

[52] Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett. 78, 3878 (2001). 

[53] I. Naumov and A. M. Bratkovsky, Phys. Rev. Lett. 101, 107601 (2008). 

[54] J. Mangeri, Y. Espinal, A. Jokisaari, S. P. Alpay, S. Nakhmanson, and O. Heinonen, 

Nanoscale 9, 1616 (2017). 

[55] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandie, Nucl. Eng. Des. 239, 1768 

(2009). 

[56] J. Y. Jo, R. J. Sichel, E. M. Dufresne, H. N. Lee, S. M. Nakhmanson, and P. G. Evans, 

Phys. Rev. B 82, 174116 (2010). 



81 

 

[57] B. Bein, H. C. Hsing, S. J. Callori, J. Sinsheimer, P. V. Chinta, R. L. Headrick, and M. 

Dawber, Nat. Commun. 6, 10136 (2015). 

[58] Q. P. Meng, M. G. Han, J. Tao, G. Y. Xu, D. O. Welch, and Y. M. Zhu, Phys. Rev. B 91, 

054104 (2015). 

[59] Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Acta Mater. 50, 395 (2002). 

[60] Z. J. Jiang, R. Z. Zhang, D. W. Wang, D. Sichuga, C. L. Jia, and L. Bellaiche, Phys. Rev. 

B 89, 214113 (2014). 

[61] M. Hadjimichael, E. Zatterin, S. Fernandez-Pena, S. J. Leake, and P. Zubko, Phys. Rev. 

Lett. 120, 037602 (2018). 

 



82 

 

Chapter 4: Focused optical pump/X-ray probe nanodiffraction 

 Introduction 

The interaction between light and matter in a crystal results in a photostrictive distortion of 

the atomic unit cell, which is a non-thermal structural deformation associated with photoinduced 

converse piezoelectric effects in polar materials [1,2]. The photostrictive effect is observed in the 

ultrafast time regime using ultrafast optical pulses with durations from femtoseconds to 

picoseconds. This regime is an excellent match for the ultrafast lattice dynamics in solids [3] that 

can be studied by time-resolved X-ray diffraction. The technique can elucidate ultrafast 

phenomena of condensed matter, including ultrafast laser-induced lattice dynamics of oxide 

materials [4-7]. In other systems, ultrafast optical pulses are widely used for applications in 

materials processing via local heating [8], laser ablation [9-11], and laser structuring [12]. 

Photostriction in complex oxide ferroelectric systems such as bismuth ferrite, BiFeO3 

(BFO), a room temperature multiferroic [13], has been observed as an ultrafast photoinduced 

lattice expansion on the order of 0.1% at the picosecond timescale [2,4,5,7]. The results were 

obtained using time-resolved X-ray diffraction combined with an ultrafast optical laser setup. The 

optical beam is used as a pump signal and the X-ray beam is used to measure optically induced 

structural changes. This system provides insight into time-dependent optically induced structural 

alterations in crystals by probing either the intensities or positions of the Bragg reflections. To 

resolve the structural changes in the ultrafast time regime, optical pulses with durations of 

femtoseconds are used to pump the structure. The arrival time of the optical pulses to the sample 

must be delayed relative to the X-ray beam to probe the time-dependent structural changes. The 

optical pump beam is often focused down to sizes that match (or exceed) the size of the X-ray 

beam footprint. This ensures the information about structural changes is measured only from the 
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optically excited volume. The X-ray beam must be focused when higher spatial resolution is 

necessary [14]. The development of X-ray focusing optics, such as the Fresnel zone plates and 

Kirkpatrick-Baez mirrors, permits the creation of X-ray beams from synchrotron light sources with 

spot sizes on the order of tens to hundreds of nanometers [15-17]. 

This chapter describes an instrument allowing tightly focused optical beams (a few 

micrometers) combined with X-ray nanodiffraction [18]. Development of this instrument is 

essential whereby the optical illumination can be spatially confined in an area of several 

micrometers to probe the localized and optically induced transient. Another benefit of using the 

focused optical beam is to improve the thermal stability of the X-ray experiment by reducing the 

total optical power, yet retaining sufficiently high optical fluence. The required optical fluence 

ranges from several mJ/cm2 for non-destructive studies of optically induced transients [4,5,8,12] 

to several J/cm2 for purposes of ablation, machining, and surface structuring [9-11]. When using 

the focused optical beam, the low optical power on the order of 10 µW produces a fluence of 1 

mJ/cm2 with experimentally useful repetition rates of tens of kHz. Attaining a similar optical 

fluence with more conventional 500 µm-scale optical beams would require the total power on the 

order of 10 mW, which would lead to a time-averaged temperature increase in the sample. Thus, 

the tightly focused optical beam can reduce the optical power by more than three orders of 

magnitude ensuring thermal stability during the X-ray nanobeam studies. 

 Experimental setup 

The focused optical pump was combined with X-ray nanodiffraction. The focused optical 

beam was delivered to the sample while the X-ray nanobeam probed the sample at various delay 

times from several hundred picoseconds to tens of nanoseconds. The optical pump/X-ray 

nanobeam instrument is schematically shown in Figure 4-1. There are three important aspects of 
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the design: (i) optical and X-ray focusing optics, (ii) optical focal spot characterization and 

alignment, and (iii) positioning the sample and optical arrangement to permit two-dimensional X-

ray diffraction microscopy. 

As shown in Figure 4-1, the ultrafast optical pulse was coupled with the optical fiber and 

delivered to the focusing optics. The focusing optics is consisted of the collimator and the objective 

lens mounted on the 3-axis piezoelectric positioner, which is referred to as an objective translation 

stage (OTS). The OTS and the sample were mounted on the same metal frame (sample stage), 

which were in turn mounted on the 3-axis piezoelectric flexure scanning stage, which is referred 

to as a piezoelectric translation stage (PTS, nPoint, Inc.). The OTS was used to move the focused 

optical beam over the sample surface to ensure spatial overlap between the optical beam and the 

footprint of the X-ray nanobeam. The PTS was used to drive the focused X-ray beams, while the 

position of the focused optical beam spot was fixed on the sample surface for the X-ray 

microscopy. The PTS was mounted on the 3-axis stepper-motor-driven coarse translation stage, 

which is referred to as a stepper-motor translation stage (STS, MFN25PP, Newport, Inc.) for a 

course motion (~μm), for example, choosing different regions of interest on the sample. Lastly, 

the STS was mounted on the four-circle x-ray diffractometer to provide control of the angular 

orientation of the sample for the 2θ scattering.  
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4.2.1 Fiber coupling and focusing 

In the experiment, optical pulses (Duetto, Time-Bandwidth Products AG) producing 10 ps-

durations at a fundamental wavelength of 1064 nm were converted to 355 nm (3.49 eV) through 

third harmonic generation [19]. The maximum optical power was 10 W with a repetition rate of 

54 kHz, which corresponds to 18.5 μJ/pulse. The repetition rate was chosen to match 1/5 of 6.5 

MHz, a repetition rate of the 24-bunch synchrotron X-ray operating mode of the Advanced Photon 

Source (APS) at the Argonne National Laboratory (ANL). Matching the repetition rates of the 

optical and the synchrotron X-ray beams is important to have precise temporal overlap in the time-

resolved pump/probe experiment. Especially, the high repetition rate of the optical beam allows 

shortening of the measurement time as well as reducion of laser-induced damage on the sample. 

The time interval between optical pulses of 18.5 μs was suitable for the time-resolved optical 

excitation experiment in which the recovery of the optically induced transient was completed 

before re-excitation by a subsequent optical pulse.  

Figure 4-1: Optical pump/x-ray nanobeam instrument. An optical pulse with wavelength 355 nm is 

coupled into a single-mode optical fiber. The output of the fiber is collected by a collimator and focused 

by an objective lens onto the sample. 
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The femtosecond pulsed ultrafast optical beam was coupled to a single-mode optical fiber 

providing a better-confined shape of the focused optical beam in which the spatial overlap between 

the focused optical beam and the X-ray nanobeam is required for small objects. Moreover, less 

than 10% coupling efficiency of the optical fiber allows us to lower the optical power to reduce 

the time-averaged temperature increase. Considering a multimode fiber instead of using the single-

mode fiber is also valid, but the laser pulse width broadening effect matters when the broadened 

pulse width is much larger than the synchrotron X-ray duration. This is due to a modal dispersion 

in which the coupled optical rays propagate in the fiber with various incident angles set by the 

fiber numerical aperture (NA) relative to the traveling axis. Difference in the paths of the optical 

propagation in the fiber leads to different arrival times at the other end of the fiber. The maximum 

difference in the path length is determined by two rays propagating in the fiber with the extreme 

incident angles set by the NA. The estimated maximum difference in the path length, considering 

1-m-long fiber with its NA of 0.13 and refractive index n of 1.47, is about 8.6 mm. It corresponds 

to the temporal broadening of several tens of picoseconds. The temporal broadening of the optical 

pulse resulting from a multimode optical fiber would thus be much less than the typical X-ray 

duration in the 24-bunch operating mode of the APS at the ANL [20,21]. 

Staring from the far-left side of Figure 4-1, one end of the optical fiber (F-SM-300- SC, 

Newport, Inc.) with its wavelength range of 305–450 nm was connected to the fiber positioner 

(FPR1-C1A, Newport, Inc.) on the fiber coupler (F-91-C1, Newport). The optical beam was 

focused using the first objective lens (U-27X, Newport, Inc.) placed on the other side of the fiber 

coupler. The mode field diameter, specified as the diameter at which the field intensity is reduced 

by a factor of 1/e2 of its maximum [22], was 3 µm. The NA of the objective lens was 0.13, and 

that of the fiber ranged from 0.12 to 0.14. The fiber positioner was then gently adjusted to place 



87 

 

the focused optical beam in the middle of the fiber core. The laser-coupled optical fiber was then 

delivered to the sample stage. The optical beam exiting the fiber was collected by the collimator 

(CFC-11X-A, ThorLabs, Inc.) with a focal length of 11 mm. The collimated optical beam was 

focused down to a spot size of several micrometers using another objective lens (UV0928, 

Universe Kogaku America, Inc.) with an NA of 0.18 and front and back focal lengths of 8.995 and 

11.075 mm, respectively. The collimator and the second optical objective lens were mounted on 

the OTS (ANPx101 and ANPz101, Attocube System AG) consisting of three piezoelectric stages 

(x, y, and z-stages). The role of these stages is to translate the focusing optics to place the depth of 

field (DOF) of the optical beam on the sample surface (using x-stage). Translating the focusing 

optics ensures spatial overlap between the laser focal spot and the footprint of the focused X-ray 

spot (using y and z-stages).  

The translation motions for the laser focusing optics was controlled independently of the 

rotational parts for the X-ray diffraction. Therefore, the laser focusing optics was placed on the 

sample stage together with the sample, and the incident angle of the focused optical beam was 

always normal to the sample surface. This provides consistent optical absorption by the sample 

while the Bragg diffraction angle varies depending on the order of Bragg condition. For example, 

the 001 and 002 Bragg reflections for the general complex oxide ferroelectric thin films, of which 

the lattice constant is about 4 Å , are typically at around 10° and 20° when using a 10 keV X-ray 

photon energy. 

Additionally, the laser focusing optics on the OTS should be lighter than the maximum 

load of each stage, which is 100 and 200 g for x or y and z stages, respectively. The optical power 

was measured at the output of the optical fiber to determine the coupling efficiency and thus the 
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experimental optical power was selected. A LabVIEW program was coded to operate the stages 

as discussed in Chapter 4.2.2.  

4.2.2 LabVIEW control program 

The OTS was responsible for positioning the focused optical beam on the sample as well 

as its DOF at the sample surface. The piezoelectric-driven stick-slip principle was used to translate 

the stages by applying a pulsed electric field using the piezo positioning controller (ANC 300, 

Attocube System AG). The pulse rate was manually fixed to be 1 kHz, and thus the travel distance 

was set by the magnitude and duration of the pulsed electric field. Precise motion control is 

required to ensure the spatial overlap between the focused optical beam and the X-ray spots on the 

sample surface and to measure the focused optical beam spot size as described in Chapter 4.2.3.  

Figure 4-2 shows the front panel (control interface) of the coded LabVIEW program. As 

soon as the program was running, it started communicating with the piezo positioning controller, 

and the user chose the stages to move (top, middle, and bottom correspond to x-, y-, and z- stages) 

as well as the travel direction. The default setting of the magnitude of the pulsed electric filed were 

20 and 30 V for the stage along x- (or y-) and z-stages, respectively. The traveling distance was 

measured by an optical microscope, and the traveling speed (µm/step) was manually calibrated for 

each stage. Once the target travel direction and distance were determined, the number of pulses 

was automatically calculated and applied to the stages. There are two operation modes (single and 

continuous) in which the stage moves only one time to the target distance, or the stage continuously 
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moves by the target distance until cancelled. The program also communicated with the optical 

power meter to display the measured optical power in real time while the pulsed electric field was 

applied. The travel distance and its direction were also monitored at the same time and plotted in 

two graph indicators, as shown in Figure 4-. A round trip can be programmed by setting a turning 

point in which the sign of the electric field application is inverted when the stage reaches the set-

point and travels back to the starting point. 

4.2.3 Optical spot size characterization 

The size of the optical beam on the sample in previous time-resolved pump/probe 

experiments ranged from 50 to 500 µm, for which a large amount of total optical power might 

increase the sample temperature. To avoid an unwanted temperature-rise, the total optical input 

power needs to be reduced. Thus, the size of the optical beam size needs to be smaller to retain the 

Figure 4-2: Front panel of LabVIEW program that shows how the user interface looks like to operate 

the program. Each stage can be selected to run separately, and their traveling speed is required to be 

manually calibrated before experiments. Measured optical power and the travel distance can be 

monitored and plotted in the two graphs on the right in real time, and saved upon clicking the save 

button when needed.  
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optical fluence for the optically induced transient. The typical size of the focused X-ray on the 

sample in the experiment was about 300 nm, and the focused optical beam spot size on the sample 

matched the focused X-ray spot size. The FWHM of the focused laser spot size D on the sample 

surface can be computed from the size of the image of the mode field radius w of the fiber [23]. 

𝑫 =
√𝟐𝒍𝒏𝟐

𝟐
 × 𝑴 × 𝒘 

Equation 4-1 

With the magnification (M, in our case it is 1.01), which is defined as the ratio of the focal 

length of the collimator to the back focal length of the objective lens, the mode field radius (half 

of the diameter) is magnified. The FWHM is a factor of √2𝑙𝑛2 larger than the magnified mode 

field radius. Here D is expected to be 1.8 µm, which is approximately 30 to 300 times smaller than 

the typical optical pump sizes employed in previous experiments. 

The size of the focused optical spot was measured using a setup shown in Error! Not a 

valid bookmark self-reference. (a). An opaque knife edge was used to block half of the power 

meter. This allowed measurement of the size of the focused optical beam spot. The objective lens 

together with the collimator were vertically translated across the knife edge while the optical power 

was measured. Before measuring the focused optical beam spot size, the objective lens and the 

collimator were scanned along the x-axis using the round-trip technique by the LabVIEW program 

to ensure the DOF of the focused optical beam was on the power meter detector plane. As shown 

in Error! Not a valid bookmark self-reference. (b), parabolic shapes of the optical power were 

measured because the middle of DOF was located when the power was at the minima, and 

continuous mode was used to plot multiple curves of the power. After locating the focused optical 
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beam at the minima, the transmitted optical power as a function of the relative knife edge position 

along the y-axis was measured, as shown in Error! Not a valid bookmark self-reference. (c). 

The error function fit of the optical power curve gives a FWHM of 1.9 µm for the intensity of the 

focused optical beam. 

The absorbed fluence (Fa) was used to describe the magnitude of the sample excitation. Fa 

is defined as the optical fluence transmitted through the surface of the sample and absorbed within 

Figure 4-3: (a) Optical spot size measurement by scanning the focused optical beam across a knife edge 

using the translation stage supporting the collimator and objective lens. (b) Transmitted optical power as 

a function of the displacement along the x-axis of the laser in which the half of laser power is blocked by 

the knife edge. The laser is positioned in the middle of the depth of focus (DOF) before measuring the power 

while moving the laser along the y-axis. (c) Transmitted optical power as a function of the displacement 

along the y-axis of the laser relative to the knife edge. The full width at half maximum given by the error 

function fit (solid line) is 1.9 µm. 
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a thin film sample [5]. At normal incidence, Fa depends on the incident laser fluence (Fi), the 

optical refractive index of the sample (ns), the optical absorption coefficient of the film (α), and 

the film thickness (∆). With approximations that reflection at the substrate/film interface and 

nonlinear effects are negligible, the absorbed fluence is 

𝑭𝒂 = 𝑭𝒊 (𝟏 − (
𝒏 − 𝟏

𝒏 + 𝟏
)

𝟐

) (𝟏 − 𝒆𝒙𝒑(−𝜶∆)) 

Equation 4-2 

For BFO, n and α are 3.396 and 0.035 nm-1 at a wavelength of 355 nm [24]. For the present 

case of a film with thickness Δ = 35 nm, Fa is 0.49Fi. 

 Time-resolved X-ray diffraction on BiFeO3 

The optical pump/X-ray probe system was characterized using a time-resolved X-ray 

nanodiffraction experiment at station 7-ID-C of the APS, in which the pulsed optical beam was 

delayed relative to the X-ray arrival time to the sample. The concept of the timing in which the 

optical and X-ray pulses coincide on the sample surface is called time-zero (T0). The positive 

(negative) T0 represents the arrival time of the optical beam after (before) the X-ray pulse arrives 

at the sample. The X-ray detector was gated to choose the number of the X-ray pulses reflected 

from the sample before or after the optical excitation. As shown in Figure 4-4, an X-ray pulse of 

100 ps width was delivered to the sample every 152 ns. The laser repetition rate was 54 kHz, which 

is useful for the experiments with the recovery time of the photoinduced effect being less than 18.5 

µs. The photoinduced lattice response was measured as a function of optical beam delay. Previous 

optical pump/X-ray probe time-resolved studies on 35 nm thick BFO thin films have reported a 
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photoinduced out-of-plane lattice expansion up to 0.44% within a time less than 100 ps with an 

absorbed fluence of 3.5 mJ/cm2 [20,21]. 

The charge carriers excited by the optical illumination screen the depolarization field in the 

ferroelectric film, which leads to the photoinduced lattice expansion. The time dependence was 

investigated using the X-ray diffraction with various optical pulse delays. Incident X-rays with 

photon energy of 10 keV were focused to a spot of 300 nm FWHM on the sample using a Fresnel 

zone plate. The diffraction angles for the Bragg condition led to a large footprint of approximately 

1 µm. Diffraction patterns were collected using a pixel array detector (Pilatus 100K, Dectris, Ltd.), 

and gated to detect only diffracted X-rays arriving after a specified delay. The detector was placed 

on the 2θ arm of the four-circle diffractometer and located at 36.4°, a nominal 2θ angle for BFO 

Figure 4-4: Timings of laser pump and x-ray probe pulses as well as the detector gating signal. The 

laser width is 50 fs with the repetition rate of 54 kHz (18.52 µs), and its time of arrival to the sample 

can be delayed relative to 100-ps x-ray pulses with the repetition rate of 6.5 MHz. The detector 

gating can also be electronically selected to collect the limited number of diffracted x-ray pulses. 
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pseudocubic 002 Bragg reflection. The regions of interest illuminated by the X-ray beam were 

required to be positioned at the center of rotation of the four-circle diffractometer, at which the X-

ray nanobeam was also focused. Several one- or two-dimensional scans using the OTS were 

carried out to search for the spatial overlap between the focused optical and X-ray beams. 

Micrometer-scale maps of the optical response were acquired by scanning the sample using the 

PTS. The time-dependence of the response of the BFO following the optical excitation was 

observed by varying the arrival time of the optical pulses relative to the fixed timing of the X-ray 

pulses. 

 Photoinduced structural changes 

The spatial variation and dynamics of the optically induced effects were evaluated by a 

series of X-ray diffraction experiments. As observed in the previous optical pump/X-ray probe 

experiments in ferroelectric thin films, there are normally photoinduced effects on a lattice that 

expands or contracts depending on the origin or time scale of the measurement. The photoinduced 

effect observed in BFO thin film was a lattice expansion measured using X-ray diffraction studies 

with the focused optical beam. The lattice expansion results from both electronic and thermal 

contributions. The depolarization screening effects increases the magnitude of the polarization as 

well as the lattice constant, and the heat generated by the absorbed laser by the sample leads to 

thermal expansion. These results were observed by conducting rocking curve scans around the 002 

BFO Bragg reflection to investigate changes in the lattice constant by measuring the position of 

the Bragg reflection. The time-resolved rocking curve scan was also conducted to probe the 

dynamics of the lattice expansion.   
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When using a two-dimensional X-ray detector, rocking curve scans around Bragg 

reflections also scans a specular direction along the 00L direction of the structure in reciprocal 

space. Figure 4- shows rocking curve scans around the BFO 002 Bragg reflection intensity as a 

function of the X-ray incident angle θ. Time-resolved photoinduced lattice expansion was 

measured at two different delay times; 0.4 ns before (black) and 0.17 ns after (red) the optical 

excitation. The Bragg angle associated with the maximum intensity of the 002 BFO Bragg 

reflection shifted from 18.27° to 18.25° following optical excitation. This corresponds to an out-

of-plane lattice expansion of 0.11% (−
𝑐𝑜𝑠18.27

𝑠𝑖𝑛18.27

(18.25−18.27)𝜋

180
) , which is consistent with the 

previous photoinduced lattice expansion with the 1 mJ/cm2 of an unfocused laser [4,5]. 

Figure 4-5: Rocking curves of the intensity of the BiFeO3 pseudocubic 002 Bragg reflection as a function 

of the incident x-ray beam angle. The diffracted x-ray intensity was measured with x-ray pulses arriving at 

times 0.4 ns before (black) and 0.17 ns after (red) the temporal coincidence of the optical and x-ray pulses, 

defined as time T0. The scan at positive delay exhibits a peak shift from 18.27° to 18.25°, corresponding to 

an optically induced out-of-plane lattice expansion of 0.11%. 
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A micrometer-scale spatial variation in the photoinduced structural distortion that matched 

the shape and size of the focused laser in two-dimensional space was measured to verify the 

thermal stability of the instrument. Scanning the focused X-ray around the area on the sample in 

which the focused laser distorts the lattices provides a map of the spatial variation of the lattice 

distortion. To map a region of interest, the incident angle of the focused X-ray was fixed, and its 

focal spot on the sample is rastered by translating the sample stage in y-z plane (See Figure 4-1). 

The incident angle of the focused laser was kept normal to the sample surface, and its focal spot 

on the sample was fixed during mapping process. As shown in Figure 4-6, the map tests the thermal 

stability and spatial resolution of the instrument. The incident X-ray angle was fixed at θ = 18.20° 

during the spatial map, lower than the steady-state BFO 002 Bragg angle at θ = 18.27°. Regions 

in which the lattice expanded have the Bragg condition shifted to a lower angle and thus appear as 

bright intensity in the map. The optically induced lattice expansion appears as a localized area of 

brighter intensity. The maximum intensity in the optically excited region at t = 0.4 ns in Figure 

Figure 4-6: Two-dimensional maps at times after and before T0 at an x-ray incident angle of θ = 18.20°, 

below the Bragg angle of 18.27°. (a) At positive delay, T0+0.4 ns, the optically induced expansion leads to 

increased intensity in the central region of the map in which the optical pulse was focused. (b) At negative 

delay, T0−0.2 ns, where photoinduced expansion is not apparent. 
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4- (a) was a factor of 1.2 larger than in the unilluminated regions. The corresponding measurement 

at t = -0.2 ns in Figure 4- (b) represents the case where the X-ray pulse arrives before the optical 

excitation and exhibits no optically induced distortion. The photoinduced effect thus nominally 

recovers within the 18.5 µs interval between optical pulses.  

 The stability of the instrument was also tested by tracking the motion of features of higher 

or lower steady-state diffracted intensity in Figure 4-6. Tracking the motions of the features 

allowed estimation of the velocity at which the sample was moving relative to the focused X-ray 

spot. Isolated regions producing higher or lower diffracted intensity can arise, for example, from 

structural artifacts due to epitaxial growth, as commonly observed in BFO thin films [25]. Local 

intensity variation was tracked between the two scans of in Figure 4- (a) and (b) to estimate the 

Figure 4-7: Change in diffracted x-ray intensity during a time-resolved experiment with various fluences. 

The incident x-ray angle is fixed slightly lower than the Bragg angle so the measured intensity becomes 

brighter due to the lattice expansion after T0.
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drift of the X-ray spot. The observed total shift was 0.5 µm during the 1.1 h interval between the 

scans, corresponding to a drift of 0.45 µm/h. 

The change in magnitude of lattice expansion at different fluences was measured as a 

function of the optical pulse delay, as shown in Figure 4-. A different X-ray incident angle was 

used at which the intensity change is less sensitive to structural distortion than the results discussed 

above. The change in intensity apparently begins at T0, and the normalized intensity becomes 

brighter as the fluence increases, demonstrating that the photoinduced lattice expansion is a 

function of the optical fluence.   

The photoinduced lattice distortion recovers back to the undistorted state within a time 

scale of a few nanoseconds to several tens of nanoseconds, through a combination of a carrier 

recombination and a thermal relaxation processes [5]. A study of the recovery dynamics of the 

photoinduced lattice distortion in BFO thin film was conducted at different regions of the sample. 

The laser with an absorbed fluence of 1 mJ/cm2 was spatially overlapped with the position of the 

focused X-ray spot and delayed from -1 to 16 ns. To measure the change in intensity as the Bragg 

peak shifts due to the optical illumination, the incident X-ray angle was fixed at 0.06° below the 

steady-state Bragg angle of the BFO 002 reflection. Because of the photoinduced lattice expansion, 

the intensity increased by a factor of 1.3 immediately following optical excitation, as shown in 

Figure 4-. This is due to the incident X-ray angle being slightly lower than the Bragg condition 

before lattice expansion, and the intensity increases as the Bragg reflection shifts to the lower angle 

direction in reciprocal space. This perturbation decays over a period of several nanoseconds with 

complex time dependence, initially falling by a factor of 2 within the first 4 ns, but persisting at a 

smaller level until at least 16 ns after excitation, as illustrated in Figure 4- (b). The initial rapid 

decay is associated with electronic phenomena in which the photoexcited charged carriers are 
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recombined, followed by a slower decay until the end of the scan, which is associated with the 

slow relaxation of the thermal expansion of the film. To characterize the spatial variation of the 

dynamics of photoinduced lattice distortion under laser illuminated regions, the relative position 

of the X-ray spot was scanned across a 25 µm wide at delay times from 0.15 to 16 ns. The dynamics 

of the change in intensity agrees within the timescale observed at a local position, as shown in 

Figure 4- (a). A key feature of the relaxation shown in Figure 4- (b) is that the lateral extent of the 

distorted region does not expand in the time following optical excitation, which is consistent with 

the relatively large lateral scale (microns) in comparison with the smaller 35 nm thickness of the 

film. The longitudinal sound velocity in BFO is 3.5 nm/ps, and thus the propagation of the initial 

acoustic impulse through the thickness of the BFO layer is too fast to be captured with the time-

resolution of this measurement [5]. The range of the scan in the lateral direction was sufficiently 

large to capture the acoustic transient, but no acoustic distortion is apparent in Figure 4- (b). Thus, 

it is suspected that the insufficient distortion arising from the propagation of the acoustic impulse 

in the lateral direction cannot be distinguished from the structural variation of the BFO layer. 

Figure 4-8: (a) Delay scan acquired in the region of spatial overlap of the focused laser and x-ray pulses. 

(b) Spatial relaxation of the photoinduced lattice dynamics at various delay times from 0.15 ns to 16 ns. 
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 Conclusion 

Combining ultrafast optical excitation with X-ray nanobeam diffraction enables the study 

of picosecond photoinduced structural dynamics in micron-scale excited regions. A micron-scale 

focused optical beam requires far less power than an unfocused optical excitation and thus thermal 

stability is sufficient for synchrotron X-ray nanobeam experiments. Experiments with focused 

optical excitation show that the photoinduced dynamics in isolated regions of a BFO thin film are 

consistent with previous area-averaged measurements. Generally, the low optical power required 

to reach high fluences allows experiments to be conducted without heating large areas of the 

sample. The combination of a tightly focused optical pump with X-ray nanobeam diffraction has 

potential future applications in the characterization of optical excitation of isolated regions within 

lithographically patterned structures and heterogeneous electronic materials.  
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Chapter 5: Dynamics of the photoinduced domain transformation in 

ferroelectric/dielectric superlattices 

 Introduction 

The optical illumination of ferroelectrics and related polar materials provides a new way to 

probe fundamental phenomena related to their polarization and can eventually provide a new way 

to manipulate their properties. There have been several previous observations of the changes in the 

structure, domain pattern, and electronic properties of ferroelectric materials under optical 

illumination. The effects associated with optical excitation can, for example, lead to changes in the 

dielectric permittivity and to the emergence of new domain structures at the domain boundaries 

[1,2]. These optically excited domain effects are reversible when the ferroelectric is cycled 

between illuminated and dark conditions [1-3]. The domains can have complex ultrafast time 

dependence following ultrafast pulsed optical excitation [4].  

The ferroelectric remnant polarization of PbTiO3/SrTiO3 (PTO/STO) ferroelectric/dielectric 

superlattice (SL) thin films spontaneously forms an intricate nanoscale polarization domain pattern 

with nanometer-scale periodicity [5,6]. In thin film SLs with few-nm repeating unit thicknesses 

the period of the striped nanodomains is on the order of 10 nm [7]. An optically-driven domain 

transformation has been observed in which the initial striped nanodomains transform to a uniform 

polarization state by a depolarization field screening effect [8]. The electrostatic energy of the thin 

film is increased by internal electric fields arising from spontaneous polarizations, which is called 

depolarization fields. As discussed in more detail in Chapter 3, polarization domains form to 

reduce the electrostatic energy to ultimately lower the total free energy.  
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When the film is illuminated by an above-bandgap optical beam, the charge carriers are 

excited. The depolarization field is screened by these additional charges. Then the uniform 

polarization state becomes energetically favorable than the nanodomains because forming domains 

also costs energy. After the end of illumination, the uniform polarization state again transform 

back to the striped nanodomains, which is called domain recovery in this chapter. In PTO/STO 

SLs, the recovery takes a period of seconds after the end of illumination at room temperature [8]. 

We hypothesized that the slow recovery dynamics arise from the trapping of optically excited 

charge carriers at defects and interfaces within the SLs [8]. But this hypothesis and its 

consequences for optically induced phenomena have not yet been tested. 

In this chapter, we report a mechanism of photoinduced domain transformation in PTO/STO 

SLs based on a charge trapping model. Synchrotron x-ray nanodiffraction measurements show that 

the rates of domain transformation and recovery vary by orders of magnitude depending on the 

temperature and optical intensity. The charge trapping model predicts the domain transformation 

and recovery that depend on the accumulation of trapped charges, and the modeled results are 

consistent with the measured data. The transformation time from the striped nanodomains to the 

uniform polarization state is reduced, for example, by a factor of 5 when the optical intensity is 

increased from 58 mW cm-2 to 145 mW cm-2. The recovery time after the end of the illumination 

depends on the temperature and is dramatically faster at elevated temperatures. 

 Experimental setup 

X-ray nanodiffraction experiments were conducted at station 7-ID-C of the Advanced 

Photon Source of Argonne National Laboratory. The X-ray beams with a photon energy of 11 keV 

were focused to a spot with 500 nm full width at half maximum (FWHM) using a 160 µm-diameter 
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Fresnel zone plate. The higher orders of the focused beams was attenuated by a 60 µm-diameter 

center stop. Unfocused beams also were attenuated by an order sorting aperture. A pixel array 

detector (Pilatus 100 K, Dectris, Ltd.) with 172 µm pixels was used to collect the diffraction 

patterns at a nominal 2θ angle of 32.6° for a diffraction condition near the 0th order 002 PTO/STO 

SLs Bragg reflection. The Bragg angle θB is 16.3°. The X-ray beam was spatially overlapped on 

the sample surface with the optical beam. The wavelength and repetition rate were 400 nm (3.1 

eV) and 1 kHz, respectively. The optical beam energy was higher than the theoretical optical band 

gaps of PTO and STO, 2.3 and 2.8 eV [9]. The spot size of the optical beam was 190 μm FWHM, 

and its incident angle was 90° with respect to the sample surface before rotating the sample to the 

Bragg angle. The PTO/STO SLs thin film consisting of 8 unit cells of PTO and 3 unit cells of STO 

was deposited using off-axis radio-frequency sputtering. The SL repeating unit was repeated 23 

times, deposited on a SrRuO3 (SRO) thin film on a (001)-oriented STO substrate. 

 Photoinduced nanodomain domain transformation 

Figure 5-1 schematically illustrates the optically induced domain transformation in 

PTO/STO SLs from the initial striped nanodomains to a uniform polarization state. The initial 

Figure 5-1: Schematic of domain transformation in PTO/STO SLs. The initial striped nanodomains contain up 

(beige) and down (blue) polarizations with its periodicity Λ. Optical illumination with a wavelength of 400 nm 

induce the domain transformation from the initial striped nanodomains to a uniform polarization state. After the 

end of illumination, the striped nanodomains is recovered. 
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striped nanodomain structure contains the up and down polarizations in the SLs. The average SL 

lattice constant aSL is 4.016 Å , and the domain period Λ is 8.7 nm. The photoinduced domain 

transformation is induced by 400 nm optical illumination. The polarization in the uniform 

polarization state is expected to be a down polarization. The direction of polarization by the extra 

charges can be determined by an extra internal electric field resulting from the trapped charge 

distributions at interfaces or domain walls [10-12]. After the end of illumination, the transformed 

region reversibly undergoes the recovery.. 

The structural changes in SLs lattices, domain orientation, and domain period appear in 

reciprocal space as shown in Figure 5-2. The photoinduced domain transformation is accompanied 

by a lattice expansion [13,14] and domain intensity disappearance. Before the optical illumination, 

the 002 SL Bragg reflection locates at Qz = 3.13 Å -1, and the domain diffuse scattering intensity 

appears in a ring shape on the Qx-Qy plane around the SL Bragg reflection with the radius ΔQ of 

0.072 Å -1. The domain ring intensity arises from the repetition of up and down polarizations 

formed in the striped nanodomains. Two key phenomena can be observed after the optically 

Figure 5-2: SL Bragg reflection (red) and domain diffuse scattering intensity (green) in reciprocal space. After 

the transformation, the SL Bragg reflection shift to a lower value of Qz by ΔQz, and the domain intensity 

disappears. 
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induced transformation. The domain diffuse scattering disappears because the striped 

nanodomains transform to the uniform polarization configuration. The disappearance of the 

nanodomain pattern leads to an increase in the polarization and a shift of the structural Bragg 

reflection shifts to lower Qz by wavevector Qz. The recovery of the nanodomain pattern after the 

end of illumination leads to a reappearance of the domain pattern and a return of the lattice 

parameter to its initial value.  

5.3.1 Photoinduced lattice expansion 

X-ray diffraction experiments were conducted to measure the Bragg reflections from SLs, 

SRO, and STO layers. Figure 5-3 shows Bragg intensities around the 002 SL reflection as a 

function of Qz ranging from 2.8 Å -1 to 3.5 Å -1 before optical illumination and after optically 

induced domain transformation. When the domain transformation is completed after optical 

Figure 5-3: 002 Bragg reflection as a function of Qz before optical illumination (solid) and after optically 

induced domain transformation (dashed). The Bragg STO and SRO reflections do not move but the SL Bragg 

reflections shift to a lower value of Qz because of the photoinduced lattice expansion. 
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illumination, the SL Bragg reflections shift to lower values of Qz because of the photoinduced 

lattice expansion but the STO and SRO reflections do not shift. 

A comparison of the dynamics for the structures at two temperatures with a single 

illumination intensity (58 mW cm-2) is shown in Figures 5-4. X-ray diffraction patterns were 

collected for the 002 SL Bragg reflections to study the temperature dependence of the structural 

changes. The diffraction patterns were acquired at the nominal Bragg angle for three different 

Figure 5-4: (a and b) Scattered x-ray intensities for SL Bragg reflections measured at room temperature and 

335 K are plotted as a function of Qz. Between the three cases, ΔQz indicates that the recovery is completed only 

at 335 K within 5 s after the end of illumination. (c and d) Domain intensities measured at room temperature and 

335 K are plotted as a function of Qy. Domain intensity disappears after the transformation and the recovery is 

completed only at 335 K within 5 s after the end of illumination. 
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cases: (i) before illumination, (ii) after optically induced transformation, and (iii) 5 s after the end 

of illumination. Figure 5-4(a) shows the Bragg reflections of these cases measured at room 

temperature as a function of Qz ranging from 3.07 Å -1 to 3.18 Å -1. The intensities were normalized 

by the peak intensity of the before illumination case. The Bragg reflection appears at Qz = 3.13 Å -

1 before illumination, which shifts to a lower value of Qz by ΔQz = 0.02 Å -1 after transformation. 

This shift corresponds to a 0.6% lattice expansion. More detailed discussion regarding the lattice 

strain is provided in Section 5.6.1. The integrated intensity of the Bragg reflection deceases by a 

factor of 2, and the width is broadened by a factor of 1.5 after transformation. The broadened width 

may originate from a photoinduced inhomogeneous strain profile along thickness direction [13,15]. 

The Bragg reflections were again measured 5 s after the end of illumination. They shift back to a 

higher value of Qz only by 67%, which indicates that it is still during the recovery. 

The same sets of experiments were repeated at 335 K as shown in Figure 5-4(b). In 

comparison with the room temperature data, a 0.06% contraction was observed before illumination 

in which the position of 002 SL Bragg reflection appears 0.001 Å -1 higher in Qz. This value is 

similar to a thermal contraction of 0.09%, which has been previously measured at 335 K [8,16,17]. 

After transformation, the Bragg reflection shifts to a lower value of Qz by ΔQz = 0.01 Å -1. The 

integrated intensity still deceases by a factor of 2, and the width is broadened by a factor of 1.5. 

Unlike room temperature, 5 s after the end of illumination, the Bragg reflection shifts completely 

back to the initial Qz, indicating that the recovery is completed within 5 s after the end of 

illumination. 
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5.3.2 Disappearance of domain diffuse scattering 

While acquiring the diffraction patterns for the Bragg reflections, the domain intensities were 

also measured at the same time. The domain intensities can be plotted as a function of Qy ranging 

from -0.15 Å -1 to 0.15 Å -1 as shown in Figures 5-4(c) and 5-4(d). The cropped intensity at zero-Qy 

is from the SL Bragg reflection intensity. The domain intensities are plotted with an offset (60 arb. 

units) to clearly see the differences. The domain intensity appears on top of the tail of the SL Bragg 

reflection at Qy = ±0.072 Å -1 before illumination. After transformation, the domain intensity 

completely disappears. Domain intensity measured 5 s after the end of illumination shows that 28% 

of domain intensity is recovered. This is much slower than the lattice relaxation. The same sets of 

X-ray diffraction experiments were repeated at 335 K to measure the domain intensity. After 

transformation, the domain intensity still disappears as shown in Figure 5-4(d), but it recovers back 

to the initial intensity 5 s after the end of illumination. This fast recovery time at higher temperature 

indicates that the recovery is thermally accelerated. 

 Optical intensity dependence of domain transformation 

X-ray diffraction experiments with different optical intensities were conducted to study the 

optical intensity dependence of domain transformation. During the experiments, changes in Bragg 

reflection position and domain intensity were measured. Figure 5-5(a) shows changes in ΔQz as a 

function of time after the end of illumination. 46 mW cm-2, 58 mW cm-2, and 145 mW cm-2 optical 

intensities were used. The data in the first three panels was acquired at room temperature. The 

shaded region is placed in the negative time for 25 s representing the light was on. During the 

illumination at room temperature, ΔQz increases due to the photoinduced lattice expansion. The 

lattice relaxes for a period of seconds after the end of illumination. The change in ΔQz at 46 mW 
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cm-2 for 25 s of illumination is negligibly small. The ΔQz at 58 mW cm-2 gradually increases for 

25 s until it reaches 0.02 Å -1 after transformation. The ΔQz at 145 mW cm-2 increases up to 0.03 

Å -1 within a few seconds of illumination and saturates at the same value for the rest of illumination. 

The same experiment was performed at 400 K and 145 mW cm-2 optical intensity as shown in the 

last panel but the change is not as apparent as the room temperature data. 

For the optical intensity dependence experiments, the domain intensities were also measured 

at the same time while acquiring the Bragg reflections. Figure 5-5(b) shows changes in normalized 

domain intensity as a function of time after the end of illumination. The data in the first three 

panels were acquired at room temperature. During the illumination, the domain intensity decreases 

Figure 5-5: Changes in (a) ΔQz and (b) domain intensities as a function of time after the end of illumination, 

showing an optical intensity dependence of domain transformation. The data in first three panels and last panel 

was obtained at room temperature and 400 K. Optical intensities were 46 mW cm-2, 58 mW cm-2, and 145 mW 

cm-2. The shaded region represents 25 s of optical illumination. 
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due to the domain transformation. For 25 s of illumination, the decrease in domain intensity at 46 

mW cm-2 is 12.5 %, while 90% of domain transformation takes 11.5 s at 58 mW cm-2, which 

becomes faster down to 2 s at 145 mW cm-2. The recovery takes for a period of seconds after the 

end of illumination. The same experiment was performed at 400 K as shown in the last panel but 

the change is not as apparent as the room temperature data even at 145 mW cm-2 optical intensity.  

The maximum ΔQz achieved for 25 s of illumination at room temperature is plotted as a 

function of the optical intensity in Figure 5-6(a). The optical intensity ranges from 19 mW cm-2 to 

145 mW cm-2 mW. No change in ΔQz was observed after 25 s of illumination with laser intensities 

lower than 34 mW cm-2. The change in ΔQz appears from 46 mW cm-2, and it saturates to 0.03 Å -

1 at 145 mW cm-2. From the data shown in Figure 5-5(a) and 5-5(b), the domain intensity decreases 

down to zero when ΔQz reaches to 0.02 Å -1.  

Figure 5-6: (a) Maximum ΔQz obtained for 25 s of illumination (light-on) as a function of optical intensity 

ranging from 19 mW cm-2 to 145 mW cm-2. The slight change of ΔQz starts to show up from 46 mW cm-2 and it 

saturates at 145 mW cm-2. (b) 90% transformation time as a function of optical intensity ranging from 19 mW 

cm-2 to 145 mW cm-2. The transformation time was not observed with optical intensity lower than 58 mW cm-2. 
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An additional key feature of Figure 5-5(a) is that ΔQz keeps increasing until it saturates to 

0.03 Å -1. This indicates that there is a threshold number of trapped charges that induces the domain 

transformation, which is not sufficient for the full depolarization field screening. Here, ΔQz for the 

threshold to induce the domain transformation is 0.02 Å -1. The charges can be trapped more until 

the depolarization is fully screened in which the ΔQz reaches its saturation at 0.03 Å -1. The 

threshold ΔQz is 66% of the saturated ΔQz, which is consistent with the LGD calculation showing 

the increase in polarizations as a function of screening efficiency. More detail discussion is proved 

in Section 5.6.2. In the calculation, the down polarization keeps increasing as the screening 

efficiency increases even after the up polarization disappears at the threshold. The 90% of domain 

transformation time measured at room temperature is plotted as a function of the optical intensity 

ranging from 19 mW cm-2 to 145 mW cm-2 in Figure 5-6(b). The transformation time was observed 

for the laser intensities lower than 58 mW cm-2 because the transformation did not occur. The 

experiment measuring changes in domain intensity as a function of time after the end of 

illumination at 400 K is shown in the last panel of Figure 5-6(b). Although the optical intensity 

145 mW cm-2 was used but the domain intensity does not change. 

 Temperature dependence of domain recovery 

For a systematic evaluation of the recovery of the SL Bragg reflection wavevector and the 

domain diffuse scattering intensity, x-ray diffraction experiments were conducted to study a real-

time recovery dynamics by measuring changes in positions of SL Bragg reflection and the domain 

intensity at room temperature, 310, and 335 K. Before measuring these changes, the sample was 

optically illuminated at 58 mW cm-2 until the domain transformation was completed. The 

completion of domain transformation was verified by the zero-domain-intensity. Figure 5-7(a) 

shows changes in ΔQz at each temperature as a function of time after the end of illumination for 
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120 s. The shift in the wavevector of the Bragg reflection was measured by fitting the diffraction 

patterns with a Gaussian peak to measure ΔQz. The shift of Bragg reflection ΔQz is 0.02 Å -1 at 

room temperature, and its extent becomes smaller at higher temperatures, for example, ΔQz at 335 

K is 0.008 Å -1. The relaxation of ΔQz also depends on the temperature, which becomes faster at 

higher temperatures. These observations are assumed to be related to the total number of trapped 

charges depending on temperature. At higher temperatures, the de-trap processes are accelerated 

and the total number of trapped charges becomes less than lower temperatures. Thus, the saturated 

ΔQz becomes small and the recovery is accelerated at higher temperatures. 

Figure 5-7(b) shows the domain recovery intensity as a function of time after the end of 

illumination. The domain intensities are normalized by their initial domain intensities measured at 

each temperature. At high temperatures, the recovery is thermally accelerated and becomes faster 

than room temperature, which might contribute to the enhanced photocurrent [18,19]. The domain 

Figure 5-7: ΔQz and domain intensity during recovery were measured. Before the measurement, the sample was 

optically illuminated at 58 mW cm-2 until the domain intensity disappeared. (a and b) ΔQz and domain intensities 

measured at room temperature (circle), 310 (star), and 335 K (square) are plotted as a function of time after the 

end of illumination. The domain intensities are normalized by their initial intensity. (c) 90% recovery time is 

plotted as a function of temperature showing that the recovery time becomes faster at higher temperatures. 
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intensity recovery times are plotted in Figure 5-7(c) as a function of temperature. The 90% of the 

domain intensity recovery time is 120 s at room temperature and it deceases down to 5 s at 335 K. 

Over 340 K, it was impossible to measure the recovery time because the recovery was completed 

much faster than the laser repetition time of 1 ms. The disappearance of domain intensity was not 

observed by the real-time x-ray diffraction experiment. 

 Charge trapping model 

The charge trapping model together with a heterogeneous domain transformation model 

predicts changes in domain intensity during the domain transformation and recovery at various 

intensities and temperatures. This combination of models is a new means to describe the 

photoinduced domain transformation without considering the domain wall motion.  

5.6.1 Microscopic heterogeneous domain transformation model 

We propose a microscopic heterogeneous domain transformation model. It is assumed that 

the trap energies would not be uniform across the film. The moment of domain transformation 

spatially varies depending on trap energies. Thus, the above-bandgap optical illumination results 

in local domain transformations, which is spatially separated from the un-transformed regions. The 

entire optically illuminated region eventually reaches a homogenous uniform polarization state 

when the domain transformation for the entire illuminated region is completed. The key 

predictions of the model are (i) the lattice constant expands by the depolarization screening effect. 

The measured average lattice constant within the optically illuminated region therefore would 

gradually increase as the size of the transformed area increases. (ii) The domain transformation 

time would become faster when using higher optical intensities because the number of trapped 
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charges by one optical pulse becomes greater with higher intensities. (iii) At higher temperatures, 

the de-trapping rate becomes faster than the optical pulse repetition time of 1 ms. 

Shift of the position of SL Bragg reflection to lower value of Qz indicates the film is strained. 

The tensile strain can be calculated using a relationship 𝜀 =
λ cot(𝜃𝐵) 𝛥𝑄𝑧

4 𝜋
, where λ is the x-ray 

wavelength and θB is the Bragg angle. As shown in Figure 5-5(a), ΔQz of 0.02 Å -1 corresponds to 

the expansion of 0.6% at 58 mW cm-2 optical intensity. The corresponding initial and final lattice 

constants are 4.016 Å  and 4.044 Å . The Bragg peak width also increase while the lattice expands. 

Figure 5-8: (a) Schematic of microscopic heterogeneous domain transformation model. 10 ×  20 matrices are 

assumed to be the optically illuminated area consisting both (i) untransformed (white) and (ii) transformed 

(magenta) sites. Particularly, it exhibits a case when 50% of the area is transformed. (b) Simulated distributions 

of SL lattice constants based on the model. Simulated parameters are such that, (i) in the untransformed region, 

the SL lattice constant is 4.016 Å  with its variation of 0.023 Å  (WQ = 0.017 Å -1) (ii) in the untransformed region, 

the lattice is set to be 4.044 Å  (0.7% strain) with its variation of 0.033 Å . The last panel shows the averaged 

lattice constant from the entire area. 
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To understand the change of the Bragg peak poistion (lattice strain), the microscopic 

heterostructure domain transformation model is simulated. 200 optically illuminated sites are 

assumed to exist with different trap energies. The moments of domain transformation are, therefore, 

different site by site. Figure 5-8(a) shows a 10×20 site matrix consisting of the (i) 100 

untransformed and (ii) 100 transformed sites. Figure 5-8(b) shows the simulation results regarding 

distributions of lattice constant at one site of (i) untransformed, (ii) transformed in the first two 

panels. The value of strain in the transformed regions is 0.7%. The lattice constants of the 

untransformed and transformed regions were assumed to be 4.016 Å  and 4.044 Å , respectively. 

The last panel shows the total distribution of lattice constant from the 200 sites for which the 

domain transformation is completed 50%.  

Figure 5-9 shows the simulation results of the SL lattice expansion as a function of the 

number of transformed sites. The Bragg peak width also gradually increases as both distributions 

of lattice constant for untransformed and transformed sites coexist (data not shown). It is 

inappropriate to compare these results to the data in Figure 5-5(a) because it is hard to directly 

Figure 5-9: Simulation results of change in SL lattice expansion showing that the lattice gradually 

increases as the lattice constant is set to be 0.7% greater than its initial when the transformation is 

completed. 
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convert the simulated number of transformed sites to the laser exposure time. Therefore, the 

simulated number of transformed sites are manually selected for the proper comparison as plotted 

in Figure 5-10. 

Figure 5-10 shows the comparison between the measured data and selected simulation 

results of lattice expansion at 58 mW cm-2. The measured data is plotted as a function of 

illumination time. The number of transformed sites are manually selected and plotted in circles. 

The selected number of transformed sites are 1, 7, 35, 47, 60, 72, 81, 86, 90, 132, 136, 138, 140, 

and 144 with the corresponding time of 2, 4, 5.5, 7, 8.5, 9.5, 10.5, 11.5, 12, 15.5, 18.5, 21, 23.5, 

and 25 seconds. Overall, the selected simulation results agree well with the measured data. 

5.6.2 Landau-Ginsburg-Devonshire calculation 

We have hypothesized that the domain transformation is linked to the screening of the 

depolarization field by effects of the above-bandgap illumination. A Landau-Ginsburg-Devonshire 

(LGD) model was used to evaluate the total free energy density as a function of screening 

Figure 5-10: Comparison between the measured data (blue curves) and selected simulation results 

(magenta circles) of change in SL lattice expansion. The measurements are under optical illumination 

for 25 seconds, and the number of transformed sites are chosen and plotted in the circles. The measured 

data and the selected simulation results agree well that the lattice gradually increases. 
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efficiency. In the calculation, ferroelectric/dielectric SLs consisting of 8-unit-cell PTO, and 3-unit-

cell SrTiO3 (STO) as an SL repeating unit is considered. The lattice constant of PTO, ζPTO is 3.9% 

larger than that of STO (3.905 Å ). The thickness of each layer is tPTO = 8 ζPTO and tSTO = 3ζSTO. 

The average lattice constant ζSL of SL is therefore 
𝑡𝑃𝑇𝑂+𝑡𝑆𝑇𝑂

8+3
= 4.016 Å, and the volume fraction 

of each layer αl is 𝛼𝑙 =
𝑡𝑙

𝑡𝑃𝑇𝑂+𝑡𝑆𝑇𝑂
. The free energy density is calculated considering the 

ferroelectric polarization in each layer as the order parameter. The total free energy density 

contributions consist of bulk, depolarization field, and external electric field. In the model, the 

depolarization field screening effect is considered in which the depolarization field vanishes as 

screening efficiency increases. The screening efficiency ranges from 0 to 1, and the depolarization 

field is considered to be fully screened when the screening efficiency is 1 as discussed in the 

supplemental materials of ref. [8]. Similar depolarization screening effects have previously been 

studied using thermodynamic models considering extra-charge-carriers-induced electric field 

[20,21]. The total free energy density F is written as Eq. 5-1 [20]. 

𝐹 = ∑ 𝛼𝑙

𝑛

𝑙

𝑓𝑙 −
1

2
∑ 𝛼𝑙

𝑛

𝑙

(1 − 𝜃)𝐸𝑙
𝐷𝑒𝑝𝑃𝑙 − ∑ 𝛼𝑙

𝑛

𝑙

𝜃𝐸𝑙
𝑒𝑥𝑡𝑃𝑙 

Equation 5-1 

where fl is the free energy density of each layer l, with the free-energy density of the polarization-

free high-temperature paraelectric phase f0, and θ is the screening efficiency. 

𝑓𝑙 = 𝑓0,𝑙 +
1

2
𝑎𝑙

′𝑃𝑙
2 +

1

4
𝑏𝑙

′𝑃𝑙
4 +

1

6
𝑐𝑙

′𝑃𝑙
6 +

𝑥𝑙
2

𝑠11,𝑙 + 𝑠12,𝑙
 

Equation 5-2 
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Here, P is the polarization, a’, b’ and c’ are the parameters derived from the unconstrained bulk 

dielectric stiffness coefficients of a, b, and c, x is the misfit strain, s is the elastic compliance, and 

Q is the electrostrictive coefficient as written as Eq. 5-3. 

𝑎𝑙
′ = 𝑎𝑙 − 𝑥𝑙

4𝑄12,𝑙

𝑠11,𝑙+𝑠12,𝑙
, and 𝑏𝑙

′ = 𝑏𝑙 −
4𝑄12,𝑙

𝑠11,𝑙+𝑠12,𝑙
, where 

1

𝑠11,𝑙+𝑠12,𝑙
= 𝑐11,𝑙 + 𝑐12,𝑙 −

2𝑐12,𝑙
2

𝑐11,𝑙
 

Equation 5-3 

The depolarization field EDep arises from the polarization discontinuity between the layers 

as written as Eq. 5-4 [8], where ε0 is the permittivity of free space of 8.8542 × 10-12 F/m. The 

relative permittivity εr,l are tabulated in Table 5-1. 

𝐸𝑙
𝐷𝑒𝑝 =

𝛼𝑙+1(𝑃𝑙+1 − 𝑃𝑙)

𝜀0𝜀𝑟,𝑙
 

Equation 5-4 

The external electric field Eext of -215 MV imitates the situation in which the polarization 

direction is determined by the extra electric field when the depolarization field is screened [15].  

 PTO STO 

Tc (°C) 479 -253 

C (°C) 1.5 × 105 0.8 × 105 

a (N m6/C4) 𝑇 − 𝑇𝐶,𝑃𝑇𝑂

𝜀0𝐶𝑃𝑇𝑂
 

𝑇 − 𝑇𝐶,𝑆𝑇𝑂

𝜀0𝐶𝑆𝑇𝑂
 

b (N m6/C4) -2.92 × 108 8.4 × 109 

c (N m10/C6) 1.56 × 109  

c11 (N/m2) 1.75 × 1011 3.181 × 1011 

c12 (N/m2) 7.94 × 1010 1.025 × 1011 

Q12 (m
4/C2) -0.026 -0.013 

εr 200 320 

ζ (Å ) 4.057 3.905 

x 𝜁𝑆𝑇𝑂 − 𝜁𝑃𝑇𝑂

𝜁𝑆𝑇𝑂
 

0 

 

Table 5-1 
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Values of the paramters used in the simulation is tabulated in Table 1. TC and C are the 

Curie temperature and constant, respectively. The magnitude of polarization in each layer is 

determined by solving 
𝜕𝐹

𝜕𝑃𝑃𝑇𝑂
=

𝜕𝐹

𝜕𝑃𝑆𝑇𝑂
= 0. The calculated average polarization is 〈𝑃〉 = ∑ 𝛼𝑙

𝑛
𝑙 𝑃𝑙. 

The magnitude of polarization is also modified by θ as shown in Figure 5-11.  

Figure 5-11 shows the result of calculation plotting the magnitudes of energetically stable 

polarization as a function of screening efficiency of θ ranging from 0 to 1, The depolarization field 

is screened as θ increases. The up and down polarization states exist when θ is small. As θ increase, 

the magnitude of up polarization decreases while that of down polarization increases due to the 

existence of Eext. The initial polarization is ±0.52 C/m2 at the zero screening efficiency representing 

the initial striped nanodomains. The zero-polarization component (red) is a solution of the 

calculation but for an unstable polarization state. As the screening efficiency increases, the 

magnitude of down polarization increases while the up polarization decreases. Once the screening 

efficiency reaches 0.55, the up polarization disappears. The down polarization at this point is -0.56 

C/m2. This occurs when the amount of charge reaches its threshold (Nth), representing a moment 

of domain transformation. The down polarization increases until the screening efficiency becomes 

Figure 5-11: Magnitude of the energetically stable polarizations as a function of screening efficiency computed 

using a Landau-Ginsburg-Devonshire calculation. The initial magnitudes are ±0.52 C/m2 representing the initial 

nanodomains. The zero-polarization is a solution of the calculation but for an unstable polarization state. When 

the screening efficiency reaches a threshold (Nth) the up polarization disappears, which corresponds to the 

moment of domain transformation. 
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unity, and the final magnitude is -0.68 C/m2. The tetragonality of the unit cell is defined as the 

ratio of out-of-plane c to in-plane lattice constants a. The relationship between the tetragonality 

and the polarization P is (
𝑐

𝑎
− 1) ∝ 𝑃2 [22-24]. In the model, the magnitudes of down polarization 

for screening efficiencies of 0 and 1, P0 and P1 are -0.56 C/m2 and -0.68 C/m2. The increase in the 

magnitude of polarization represnets that the c increaes as the depolarization field is screened. In 

addition, the magnitude of down polarization at threshold Pth is -0.64 C/m2. Assuming that ε1 and 

εth are the simulated out-of-plane strains for screening efficiencies of 1 and threshold, their ratio 

𝜀𝑡ℎ

𝜀1
=

𝑃𝑡ℎ
2 −𝑃0

2

𝑃1
2−𝑃0

2 = 0.64 indicates that the lattice expansion at thresold is 64% of the maximum strain 

with the fully screened depolarization field. 

5.6.3 Domain intensity calculation 

Based on the results of the LGD calculation, we propose a photoinduced charge trapping 

model for the domain transformation. The charge carriers are excited by the above-bandgap optical 

pulses every 1 ms. The charge carriers recombine with recombination time constants on the order 

of several hundreds of microseconds in ferroelectric thin films [25,26]. A significant population 

of carriers, however, can be trapped at defects before recombination [27]. Once the number of 

accumulated charge carriers (Naccum) exceeds Nth, the domain transformation occurs. Between the 

optical pulses, the trapped charge carriers are thermally de-trapped. After the end of illumination, 

the de-trapping process solely occurs and the recovery process begins.  

The gradual recovery of the transformation suggests that there is not a single value of the 

trap energy that applies to the entire PTO/STO thin film. The rate of charge accumulation can vary 

if the trap energies are not uniform across the film. In this case, transformed regions and 

untransformed regions coexist in spatially separated regions during the gradual initial 
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transformation and recovery. We consider the case in which there are a set of different de-trapping 

times. The moment of domain transformation in a microscopic perspective therefore vary 

depending on the de-trapping times. 

Charge trapping model is based on the existence of deep-level charge traps in the bandgap. 

The photoexcited charge carriers are trapped in these traps under the above-bandgap optical 

illumination, and thermally de-trapped after the end of illumination. In this model, it is necessary 

to estimate the charge emission rate resulting from the de-trapping process. Depending on the trap 

energy relative to the Fermi energy level, the emission rate of one carrier type among electron and 

hole dominates while the other can be neglected [28]. The electron emission is considered in the 

model. The trapping and de-trapping processes of electron are defined as (i) n cn pT for electron 

trap and (ii) en nT for electron emission, respectivley, where n is the electron density in the 

conduction band, cn is the electron capture coefficient, pT is the hole trap density, en is the electron 

emission rate, nT is the electron trap density, and the total trap density NT = nT + pT. At the thermal 

equilibrium, the charge trap and emission rates are the same (en nT = cn pT n). Here, en can be re-

written using the definitions of 𝑛 = 𝑁𝑐exp 
𝐸𝐹−𝐸𝐶

𝑘𝐵𝑇
 and 𝑛𝑇 =

𝑁𝑇

1+exp 
𝐸𝑡−𝐸𝐹

𝑘𝐵𝑇

, where Nc is the density of 

state in the conduction band of 2 (
2 𝜋 𝑚𝑒𝑓𝑓𝑘𝐵 𝑇

ℎ2 )
1.5

m-3, EF is the Fermi energy level, EC is the 

conduction band, kB is Boltzmann’s constant of 8.617× 10-5 eV/K, and T is the temperature. 

Therefore, 𝑒𝑛 = 𝑐𝑛𝑁𝑐 exp (
𝐸𝑡−𝐸𝐶

𝑘𝐵𝑇
) = σ𝑣𝑡ℎ𝑁𝑐exp (

−𝐸𝑡

𝑘𝐵𝑇
) , where σ is the charge capture cross-

section on the order of 10-24 m2 [29,30], vth is the electron thermal velocity of √
3𝑘𝐵 𝑇 

𝑚𝑒𝑓𝑓
 m/s, me is 

the electron mass of 9.11 × 10-31 kg, meff is its effective mass of 5.78 me kg estimated in PbTiO3 
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(PTO) [31], and h is Plank’s constant of 6.626 × 10-34 m2 kg/s. The rate constant discussed in 

Figure 5-12 is σ vth Nc s
-1 [32]. 

The charge accumulation process is illustrated in Figure 5-12 showing Naccum normalized by 

Nth as a function of illumination time. The key description is that there are the charge gain and loss 

by the trapping and de-trapping processes. We define the gain as Ntrap as the amount of trapped 

charges every optical pulse, and the loss as Ndetrap,i = 𝑒𝑥𝑝 (−
𝑡𝑟

𝜏𝑖(𝑇)
), where tr is 1 ms, and τi is a 

thermal de-trap time constant at each i local site. The de-trap time constant is determined by the 

local trap energy Et,i [28]: 

𝜏𝑖(𝑇) =
1

𝐶 exp (−
𝐸𝑡,𝑖

𝑘𝐵𝑇
)
 

Equation 5-5 

where C is the rate constant, and T is the temperature. For the simulation results, 21 trap energies 

ranging from 820 meV to 900 meV were used. The total number of trapped charges at each i 

local site Naccum,i is, therefore, written as a geometric series: 

Figure 5-12: Schematic of charge trapping model showing the number of trapped charges normalized by the 

threshold (Naccum/Nth) as a function of illumination time. The photoinduced charges are trapped every 1 ms of 

optical pulses. The trapped charges are thermally de-trapped between the optical pulses. When the number of 

charge trapping is greater than the loss, the total accumulation increase. 
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𝑁𝑎𝑐𝑐𝑢𝑚,𝑖(𝑡𝑒 , 𝑇) = 𝑁𝑡𝑟𝑎𝑝𝑁𝑑𝑒𝑡𝑟𝑎𝑝,𝑖 [
𝑁𝑑𝑒𝑡𝑟𝑎𝑝,𝑖

(
𝑡𝑒
𝑡𝑟

)+1
− 1

𝑁𝑑𝑒𝑡𝑟𝑎𝑝,𝑖 − 1
] 

Equation 5-6 

Here Ntrap Ndetrap,i is the first term of the series, Ndetrap,i is the common ratio, and te is the total 

optical illumination time. Thus, te/tr is the total number of optical pulses exposed to the sample, 

which is equal to the total number of terms of the series. 

The domain intensity from n number of sites can be estimated using a sum of error functions. 

This fitting imitates the moment of domain transformation, which occurs when Naccum,i exceeds 

Nth: 

𝐼(𝑡𝑒) =
𝐼0

𝑛
∑

1 − erf [𝑁𝑎𝑐𝑐𝑢𝑚,𝑖(𝑡𝑒 , 𝑇) − 𝑁𝑡ℎ]

2

𝑛

𝑖=1

 

Equation 5-7 

where I0 is the initial domain intensity. 

The charge trapping model provides an estimation of optical intensity dependence of domain 

transformation. Naccum was calculated using the model, and the results of the model for two optilcal 

intensities of 58 mW cm-2 and 145 mW cm-2 are shown in Figure 5-13. The Naccum normalized by 

Nth is plotted as a function of time after the end of illumination. The black dashed line is for the 

threshold Nth level. In this calculation, a trap energy of 860 meV was only considered. During the 

illumination, Naccum/Nth exceeds the unity value at 8 s and 2 s at 58 mW cm-2 and 145 mW cm-2, 

respectively. Naccum/Nth then increaes up to 2 and 9 before the end of illumination. After the end of 

illumination, Naccum/Nth decreases and passes the unity value at 13 s and 37 s for 58 mW cm-2 and 
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145 mW cm-2, respectively. This indicates that the domain transformation occurs faster with higher 

intensities but the recovery may take longer due to total nuber of trapped charges.  

The charge trapping model also predicts the temperature dependce of domain intensity 

recovery. The results of simulated domain intensities for two temperatures of room temperature 

and 335 K are plotted as a function of time after the end of illumination in Figure 5-14. In the 

model, 21 trap energies within a range of 820 meV to 900 meV are considered. The step-like 

intensity increase arises from the different trap energy distribution in which the moment of 

recovery varies by the trap energy. The simulated domain intensity shows that the recovery 

becomes faster at the higher temperature. The results are compared to the normalized domain 

recovery intensities measured at room temperature and 335 K extracted from Figure 5-7(b), which 

shows a good agreement with the model. 

Figure 5-13: Results of optical intensity dependence of domain recovery based on the charge trapping model 

showing the changes in Naccum/Nth as a function of time after the end of illumination. The shaded region represents 

25 s of optical illumination. Two optical intensity of 58 mW cm-2 (solid) and 145 mW cm-2 (dash-single dotted) 

are used. 
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Based on the results in Figure 5-13, the changes in domain intensity is simulated using the 

charge trapping model to study the optical intensity dependence of domain transformation. In the 

simulation, the optical intensities of 46 mW cm-2, 58 mW cm-2, and 145 mW cm-2 were considered. 

Two temperatures of room temperature and 400 K were also considered. The simulated results are 

plotted as a function of time after the end of illumination in Figure 5-15 by overlapping them with 

the measured data extracted from Figure 5-5(b). In the simulation, the optically illuminated region 

consists of 21 trap energies ranging from 820 meV to 900 meV. The first three panels are for room 

temperature, and the last one is for 400 K in the simulation. The simulation results show that the 

domain transformation is completed faster at higher optical intensity, and the recovery is not 

measurable at higher temperature because the recovery is completed much faster than 1 ms. These 

are in good agreements with the measured data. 

As discussed previously, the final Naccum depends on the optical intensity and trap energy. 

By assuming different trap energies are distributed in the illuminated area, Naccum can be averaged 

over this area. The normalized domain intensities for the three intensities measured extracted from 

Figure 5-14: Results of temperature dependence of domain recovery based on the charge trapping model 

showing the changes in domain intensity as a function of time after the end of illumination. Domain intensities 

are normalized by their initial intensities. Two domain intensities measured at room temperature (circle) and 

335(square) are extracted from Figure 7 (b), which are compared to the intensities simulated at room 

temperature (solid) and 335(dashed). 
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Figure 5-5(b) are plotted as a function of simulated area-averaged Naccum/Nth in Figure 5-16. In the 

simulation, 21 trap energies ranging from 820 meV to 900 meV were considered. Figure 5-16 

shows that the moments of domain intensity drop for different intensities merge at a certain point 

of area-averaged Naccum/Nth. This reflects the validity of the charge trap model calculating the 

number of trapped charges to estimate the moment of domain transformation and changes in 

domain intensity.  

 To investigate the effect of thermally accelerated recovery domain transformation, the 

change in domain intensity was measured with increasing temperature. The sample was optically 

illuminated and heated up to 400 K simultaneously during the measurement. The change of 

normalized domain is shown in Figure 5-17(a). Each data point shows the diffracted x-ray intensity 

measured for 1 s. The shaded region indicates that the laser is on and the temperature is ramping 

Figure 5-15: Changes in normalized domain intensity as a function of time after the end of illumination 

compared with the simulated domain intensity from charge trapping model. The shaded region represents 25 s 

of optical illumination. The measured data is extracted from Figure 5-5 (b). 
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up with a ramp-rate of 0.1 K/sec. Within the first few seconds, the domain intensity disappears. It 

remains at zero-intensity up to 330 K. As the temperature increases further, the domain intensity 

starts to recover back to the initial intensity. Over 345 K, the recovery domain transformation is 

thermally accelerated much faster than 1 ms, and the measured intensity stays at the initial 

intensity. 

 In Figure 5-17(b), the simulated domain intensity is plotted as a function of increasing 

temperature. In the simulation, 21 trap energies ranging from 890 meV to 970 meV were 

considered. The simulated domain intensity decreases to zero within the first few seconds and 

stays the same until the temperature increases up to 330 K. Above this temperature, the thermal 

energy becomes high enough to overcome the trap energy and the simulated domain intensity starts 

to recover back to the initial intensity until the temperature incerases up to 345 K. The step-like 

Figure 5-16: Changes in normalized domain intensity as a function of area-averaged Naccum/Nth. The moments 

of domain intensity drops using different intensities merge at a certain point. 
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intensity increase arises from the energy variations in which the moment of transformation varies 

depending on the trap energy. Above this temperature, the simulated domain intensity stays the 

same which agrees well with the observed results in Figure 5-17(a). 

 Conclusion 

In conclusion, we show that the trapped photoinduced charge carriers induce the domain 

transformation in PTO/STOSLs thin film. The transformation time is accelerated by using higher 

optical intensity. The slow recovery after the end of illumination at room temperature can also be 

accelerated at higher temperature faster than a millisecond. The optical intensity and temperature 

dependence of the domain transformation and recovery are studied by x-ray diffraction 

experiments. A LGD calculation predicts the domain transformation based on the depolarization 

field screening effect. A charge trapping model together with the heterogeneous domain 

transformation model calculates the number of trapped charges. The change in domain intensity 

during the processes of domain transformation and recovery is simulated. The results are in good 

Figure 5-17: (a) Plot of change in normalized domain intensity as a function of temperature with the laser on. 

The shaded region indicates when the laser is on, and the temperature is ramping up. The temperature ramp rate 

was 0.1 K/s. (b) Simulated normalized domain intensity as a function of increasing temperature. The Shaded 

region is where the laser is on, and temperature is ramping up in the simulation. 
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agreements with the measured data. Based on these results, an optimization of optical intensity 

and the temperature can facilitate the ultrafast reversible optical control of the nanodomains in 

SLs. 
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